Skip to main content

Advertisement

Log in

Let-7d inhibits intratumoral macrophage M2 polarization and subsequent tumor angiogenesis by targeting IL-13 and IL-10

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

A Correction to this article was published on 14 February 2023

This article has been updated

Abstract

The microRNA let-7d has been reported to be a tumor suppressor in renal cell carcinoma (RCC). Tumor-associated macrophages (TAM) are M2-polarized macrophages that can enhance tumor growth and angiogenesis in many human cancers. However, the role of let-7d in TAM-associated RCC progression remains elusive. First, we observed a strongly inverse correlation between let-7d expression and microvessel density in RCC tissues. Furthermore, the proliferation, migration, and tube formation of HUVECs were significantly inhibited by conditioned medium from a coculture system of the phorbol myristate acetate pretreated human THP-1 macrophages and let-7d-overexpressing RCC cells. Moreover, the proportion of M2 macrophages was significantly lower in the group that was cocultured with let-7d-overexpressing RCC cells. Subcutaneous xenografts formed by the injection of let-7d-overexpressing RCC cells together with THP-1 cells resulted in a significant decrease in the M2 macrophage ratio and microvessel density compared with those formed by the injection of control RCC cells with THP-1 cells. In silico and experimental analysis revealed interleukin-10 (IL-10) and IL-13 as let-7d target genes. Importantly, the addition of IL-10 and IL-13 counteracted the inhibitory effects of the conditioned medium from the coculture system with let-7d-overexpressing RCC cells in vitro. Additionally, overexpression of IL-10 and IL-13 reversed the effects of let-7d on macrophage M2 polarization and tumor angiogenesis in vivo. Finally, the expression of IL-10 and IL-13 were inversely correlated with the expression of let-7d in RCC clinical specimens. These results suggest that let-7d may inhibit intratumoral macrophage M2 polarization and subsequent tumor angiogenesis by targeting IL-10 and IL-13.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data supporting the conclusions of this article are included in the article.

Change history

Abbreviations

ccRCC:

Clear cell renal cell carcinoma

EGF:

Epidermal growth factor

FGF:

Fibroblast growth factor

HUVEC:

Human umbilical vein endothelial cell

KICH:

Kidney chromophobe

KIRC:

Kidney renal clear cell carcinoma

KIRP:

Kidney renal papillary cell carcinoma

MVD:

Microvessel density

PDGF:

Platelet-derived growth factor

PMA:

Phorbol myristate acetate

PIGF:

Placental growth factor

qRT–PCR:

Quantitative reverse transcription–polymerase chain reaction

RCC:

Renal cell carcinoma

TAM:

Tumor-associated macrophage

TCGA:

The cancer genome atlas

TGF-β:

Transforming growth factor-β

TNF-α:

Tumor necrosis factor α

3′-UTR:

3′-Untranslated regions

VEGF:

Vascular endothelial growth factor

References

  1. McDermott DF, Huseni MA, Atkins MB et al (2018) Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med 24(6):749–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Viallard C, Larrivee B (2017) Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 20(4):409–426

    Article  CAS  PubMed  Google Scholar 

  3. Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  4. Lu G, Zhang R, Geng S et al (2015) Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization. Nat Commun 6:6676

    Article  CAS  PubMed  Google Scholar 

  5. Murray PJ, Allen JE, Biswas SK et al (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tjiu JW, Chen JS, Shun CT et al (2009) Tumor-associated macrophage-induced invasion and angiogenesis of human basal cell carcinoma cells by cyclooxygenase-2 induction. J Invest Dermatol 129(4):1016–1025

    Article  CAS  PubMed  Google Scholar 

  7. Erreni M, Mantovani A, Allavena P (2011) Tumor-associated Macrophages (TAM) and Inflammation in Colorectal Cancer. Cancer Microenviron 4(2):141–154

    Article  CAS  PubMed  Google Scholar 

  8. Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4(1):71–78

    Article  CAS  PubMed  Google Scholar 

  9. Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xu L, Zhu Y, Chen L et al (2014) Prognostic value of diametrically polarized tumor-associated macrophages in renal cell carcinoma. Ann Surg Oncol 21(9):3142–3150

    Article  PubMed  Google Scholar 

  11. Su B, Zhao W, Shi B et al (2014) Let-7d suppresses growth, metastasis, and tumor macrophage infiltration in renal cell carcinoma by targeting COL3A1 and CCL7. Mol Cancer 13:206

    Article  PubMed  PubMed Central  Google Scholar 

  12. Miyake M, Hori S, Morizawa Y et al (2016) CXCL1-mediated interaction of cancer cells with tumor-associated macrophages and cancer-associated fibroblasts promotes tumor progression in human bladder cancer. Neoplasia 18(10):636–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Desai N, Ludgin J, Goldberg J et al (2013) Development of a xeno-free non-contact co-culture system for derivation and maintenance of embryonic stem cells using a novel human endometrial cell line. J Assist Reprod Genet 30(5):609–615

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wang D, Stockard CR, Harkins L et al (2008) Immunohistochemistry in the evaluation of neovascularization in tumor xenografts. Biotech Histochem 83(3–4):179–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Denton AE, Roberts EW, Fearon DT (2018) Stromal cells in the tumor microenvironment. Adv Exp Med Biol 1060:99–114

    Article  CAS  PubMed  Google Scholar 

  16. Tuna B, Yorukoglu K, Unlu M et al (2006) Association of mast cells with microvessel density in renal cell carcinomas. Eur Urol 50(3):530–534

    Article  PubMed  Google Scholar 

  17. Jones J, Otu H, Spentzos D et al (2005) Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res 11(16):5730–5739

    Article  CAS  PubMed  Google Scholar 

  18. Li W, Zhu W, Che J et al (2013) Microarray profiling of human renal cell carcinoma: identification for potential biomarkers and critical pathways. Kidney Blood Press Res 37(4–5):506–513

    Article  CAS  PubMed  Google Scholar 

  19. Chevrier S, Levine JH, Zanotelli V et al (2017) An immune atlas of clear cell renal cell carcinoma. Cell 169(4):736–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang Z, Xie H, He D et al (2016) Infiltrating macrophages increase RCC epithelial mesenchymal transition (EMT) and stem cell-like populations via AKT and mTOR signaling. Oncotarget 7(28):44478–44491

    Article  PubMed  PubMed Central  Google Scholar 

  21. Toge H, Inagaki T, Kojimoto Y et al (2009) Angiogenesis in renal cell carcinoma: the role of tumor-associated macrophages. Int J Urol 16(10):801–807

    Article  CAS  PubMed  Google Scholar 

  22. Fischer C, Jonckx B, Mazzone M et al (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475

    Article  CAS  PubMed  Google Scholar 

  23. Tan HY, Wang N, Man K et al (2015) Autophagy-induced RelB/p52 activation mediates tumour-associated macrophage repolarisation and suppression of hepatocellular carcinoma by natural compound baicalin. Cell Death Dis 6:e1942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jin H, He Y, Zhao P et al (2019) Targeting lipid metabolism to overcome EMT-associated drug resistance via integrin beta3/FAK pathway and tumor-associated macrophage repolarization using legumain-activatable delivery. Theranostics 9(1):265–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ohba K, Miyata Y, Matsuo T et al (2014) High expression of Twist is associated with tumor aggressiveness and poor prognosis in patients with renal cell carcinoma. Int J Clin Exp Pathol 7(6):3158–3165

    PubMed  PubMed Central  Google Scholar 

  26. Lee JH, Lee GT, Woo SH et al (2013) BMP-6 in renal cell carcinoma promotes tumor proliferation through IL-10-dependent M2 polarization of tumor-associated macrophages. Cancer Res 73(12):3604–3614

    Article  CAS  PubMed  Google Scholar 

  27. Barros MH, Hauck F, Dreyer JH et al (2013) Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages. PLoS ONE 8(11):e80908

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rakaee M, Busund LR, Jamaly S et al (2019) Prognostic value of macrophage phenotypes in resectable non-small cell lung cancer assessed by multiplex immunohistochemistry. Neoplasia 21(3):282–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ichimura T, Morikawa T, Kawai T et al (2014) Prognostic significance of CD204-positive macrophages in upper urinary tract cancer. Ann Surg Oncol 21(6):2105–2112

    Article  PubMed  Google Scholar 

  30. Kawachi A, Yoshida H, Kitano S et al (2018) Tumor-associated CD204(+) M2 macrophages are unfavorable prognostic indicators in uterine cervical adenocarcinoma. Cancer Sci 109(3):863–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wittke F, Hoffmann R, Buer J et al (1999) Interleukin 10 (IL-10): an immunosuppressive factor and independent predictor in patients with metastatic renal cell carcinoma. Br J Cancer 79(7–8):1182–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Daurkin I, Eruslanov E, Stoffs T et al (2011) Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res 71(20):6400–6409

    Article  CAS  PubMed  Google Scholar 

  33. Roszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm 2015:816460

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hallett MA, Venmar KT, Fingleton B et al (2012) Cytokine stimulation of epithelial cancer cells: the similar and divergent functions of IL-4 and IL-13. Cancer Res 72(24):6338–6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Terabe M, Matsui S, Noben-Trauth N et al (2000) NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 1(6):515–520

    Article  CAS  PubMed  Google Scholar 

  36. Gabitass RF, Annels NE, Stocken DD et al (2011) Elevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13. Cancer Immunol Immunother 60(10):1419–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chang Y, Xu L, An H et al (2015) Expression of IL-4 and IL-13 predicts recurrence and survival in localized clear-cell renal cell carcinoma. Int J Clin Exp Pathol 8(2):1594–1603

    PubMed  PubMed Central  Google Scholar 

  38. Satoh T, Takeuchi O, Vandenbon A et al (2010) The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol 11(10):936–944

    Article  CAS  PubMed  Google Scholar 

  39. Gao S, Zhou J, Liu N et al (2015) Curcumin induces M2 macrophage polarization by secretion IL-4 and/or IL-13. J Mol Cell Cardiol 85:131–139

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Yunfei Fan for the support and help for technical assistance.

Funding

This study was supported by Grants from the National Natural Science Foundation (Grant No.8170101445), the Beijing Natural Science Foundation (No.7182191) and the Capital Health Research and Development of Special (code: 2016-1-2241).

Author information

Authors and Affiliations

Authors

Contributions

Design: BS, HH, YG, WZ, GZ and LZ Experimental operation: BSu, HH, WH, XL, JY and JY. Acquisition of data and Analysis (acquired and managed patients’ information and statistical analysis): BS, HH, YG, XL and GZ. Writing, review, and/or revision of the manuscript: BS, HH, GZ and LZ. All authors read and approved the submitted manuscript.

Corresponding authors

Correspondence to Boxing Su, Gang Zhang or Liqun Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval and consent to participate

All Procedures performed in studies involving human participants or animals were reviewed and granted by the Ethics Committee of Peking University First Hospital and the Ethics Committee of Tsinghua Changgung Hospital, Beijing, China. Informed consent was obtained from all the patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2184 KB)

Supplementary file2 (PDF 87 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, B., Han, H., Gong, Y. et al. Let-7d inhibits intratumoral macrophage M2 polarization and subsequent tumor angiogenesis by targeting IL-13 and IL-10. Cancer Immunol Immunother 70, 1619–1634 (2021). https://doi.org/10.1007/s00262-020-02791-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02791-6

Keywords

Navigation