Skip to main content

Advertisement

Log in

B7-H3 confers resistance to Vγ9Vδ2 T cell-mediated cytotoxicity in human colon cancer cells via the STAT3/ULBP2 axis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunotherapy based on γδT cells has limited efficiency in solid tumors, including colon cancer (CC). The immune evasion of tumor cells may be the main cause of the difficulties of γδT cell-based treatment. In the present study, we explored whether and how B7-H3 regulates the resistance of CC cells to the cytotoxicity of Vγ9Vδ2 (Vδ2) T cells. We observed that B7-H3 overexpression promoted, while B7-H3 knockdown inhibited, CC cell resistance to the killing effect of Vδ2 T cells in vitro and in vivo. Mechanistically, we showed that B7-H3-mediated CC cell resistance to the cytotoxicity of Vδ2 T cells involved a molecular pathway comprising STAT3 activation and decreased ULBP2 expression. ULBP2 blockade or knockdown abolished the B7-H3 silencing-induced increase in the cytotoxicity of Vδ2 T cells to CC cells. Furthermore, cryptotanshinone, a STAT3 phosphorylation inhibitor, reversed the B7-H3 overexpression-induced decrease in ULBP2 expression and attenuated the killing effect of Vδ2 T cells on CC cells. Moreover, there was a negative correlation between the expression of B7-H3 and ULBP2 in the tumor tissues of CC patients. Our results suggest that the B7-H3-mediated STAT3/ULBP2 axis may be a potential candidate target for improving the efficiency of γδT cell-based immunotherapy in CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Tamas K, Walenkamp AM, de Vries EG, van Vugt MA, Beets-Tan RG, van Etten B, de Groot DJ, Hospers GA (2015) Rectal and colon cancer: Not just a different anatomic site. Cancer Treat Rev 41:671–679. https://doi.org/10.1016/j.ctrv.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin. https://doi.org/10.3322/caac.21601

    Article  PubMed  Google Scholar 

  4. Bhat SAVD (2018) Checkpoint blockade rescues the repressive effect of histone deacetylases inhibitors on γδ T cell function. Front Immunol 9:1615. https://doi.org/10.3389/fimmu.2018.01615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bottino CTG, Ferrini S et al (1988) Two subsets of human T lymphocytes expressing gamma/delta antigen receptor are identifiable by monoclonal antibodies directed to two distinct molecular forms of the receptor. J Exp Med 168:491–505

    Article  CAS  PubMed  Google Scholar 

  6. Pui CH, Pei D, Cheng C et al (2019) Treatment response and outcome of children with T-cell acute lymphoblastic leukemia expressing the gamma-delta T-cell receptor. Oncoimmunology 8:1599637. https://doi.org/10.1080/2162402X.2019.1599637

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gober HJ, Kistowska M, Angman L, Jeno P, Mori L, De Libero G (2003) Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 197:163–168. https://doi.org/10.1084/jem.20021500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Z. X, (2017) Dual face of Vγ9Vδ2-T cells in tumor immunology: anti- versus pro-tumoral activities. Front Immunol 8:1041. https://doi.org/10.3389/fimmu.2017.01041

    Article  CAS  Google Scholar 

  9. Baker FL, Bigley AB, Agha NH, Pedlar CR, O’Connor DP, Bond RA, Bollard CM, Katsanis E, Simpson RJ (2019) Systemic beta-adrenergic receptor activation augments the ex vivo expansion and anti-tumor activity of Vgamma9Vdelta2 T-cells. Front Immunol 10:3082. https://doi.org/10.3389/fimmu.2019.03082

    Article  CAS  PubMed  Google Scholar 

  10. Wang ZWZ, Li S et al (2018) Decitabine enhances Vγ9Vδ2 T cell-mediated cytotoxic effects on osteosarcoma cells the NKG2DL-NKG2D Axis. Front Immunol 9:1239. https://doi.org/10.3389/fimmu.2018.01239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Willcox BE, Willcox CR (2019) gammadelta TCR ligands: the quest to solve a 500-million-year-old mystery. Nat Immunol 20:121–128. https://doi.org/10.1038/s41590-018-0304-y

    Article  CAS  PubMed  Google Scholar 

  12. Li Y, Guo G, Song J, Cai Z, Yang J, Chen Z, Wang Y, Huang Y, Gao Q (2017) B7–H3 promotes the migration and invasion of human bladder cancer cells via the PI3K/Akt/STAT3 signaling pathway. J Cancer 8:816–824. https://doi.org/10.7150/jca.17759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee YH, Martin-Orozco N, Zheng P et al (2017) Inhibition of the B7–H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res 27:1034–1045. https://doi.org/10.1038/cr.2017.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu H, Tekle C, Chen YW et al (2011) B7–H3 silencing increases paclitaxel sensitivity by abrogating Jak2/Stat3 phosphorylation. Mol Cancer Ther 10:960–971. https://doi.org/10.1158/1535-7163.MCT-11-0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Son Y, Kwon S-M, Cho J-Y (2019) CD276 (B7–H3) maintains proliferation and regulates differentiation in angiogenic function in late endothelial progenitor cells. Stem Cells 37:382–394. https://doi.org/10.1002/stem.2944

    Article  CAS  PubMed  Google Scholar 

  16. Lemke D, Pfenning PN, Sahm F et al (2012) Costimulatory protein 4IgB7H3 drives the malignant phenotype of glioblastoma by mediating immune escape and invasiveness. Clin Cancer Res 18:105–117. https://doi.org/10.1158/1078-0432.CCR-11-0880

    Article  CAS  PubMed  Google Scholar 

  17. Cai D, Li J, Liu D et al (2020) Tumor-expressed B7–H3 mediates the inhibition of antitumor T-cell functions in ovarian cancer insensitive to PD-1 blockade therapy. Cell Mol Immunol 17:227–236. https://doi.org/10.1038/s41423-019-0305-2

    Article  CAS  PubMed  Google Scholar 

  18. Lu H, Shi T, Wang M, Li X, Gu Y, Zhang X, Zhang G, Chen W (2020) B7–H3 inhibits the IFN-γ-dependent cytotoxicity of Vγ9Vδ2 T cells against colon cancer cells. OncoImmunology 9:1748991. https://doi.org/10.1080/2162402x.2020.1748991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang R, Ma Y, Zhan S, Zhang G, Cao L, Zhang X, Shi T, Chen W (2020) B7–H3 promotes colorectal cancer angiogenesis through activating the NF-kappaB pathway to induce VEGFA expression. Cell Death Dis 11:55. https://doi.org/10.1038/s41419-020-2252-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li X, Lu H, Gu Y, Zhang X, Zhang G, Shi T, Chen W (2020) Tim-3 suppresses the killing effect of Vgamma9Vdelta2T cells on colon cancer cells by reducing perforin and granzyme B expression. Exp Cell Res 386:111719. https://doi.org/10.1016/j.yexcr.2019.111719

    Article  CAS  PubMed  Google Scholar 

  21. Zhou XGY, Xiao H et al (2017) Combining Vγ9Vδ2 T cells with a lipophilic bisphosphonate efficiently kills activated hepatic stellate cells. Front Immunol 8:1381. https://doi.org/10.3389/fimmu.2017.01381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ma Y, Wang R, Lu H et al (2020) B7–H3 promotes the cell cycle-mediated chemoresistance of colorectal cancer cells by regulating CDC25A. J Cancer 11:2158–2170. https://doi.org/10.7150/jca.37255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK, Varambally S (2017) UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia (New York, NY) 19:649–658. https://doi.org/10.1016/j.neo.2017.05.002

    Article  CAS  Google Scholar 

  24. Xu L, Chen X, Shen M et al (2018) Inhibition of IL-6-JAK/Stat3 signaling in castration-resistant prostate cancer cells enhances the NK cell-mediated cytotoxicity via alteration of PD-L1/NKG2D ligand levels. Mol Oncol 12:269–286. https://doi.org/10.1002/1878-0261.12135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu XZZ, Jiang L et al (2015) Matrine increases NKG2D ligand ULBP2 in K562 cells via inhibiting JAK/STAT3 pathway: a potential mechanism underlying the immunotherapy of matrine in leukemia. Am J Transl Res 7:1838–1849

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Park DJ, Sung PS, Kim J-H, Lee GW, Jang JW, Jung ES, Bae SH, Choi JY, Yoon SK (2020) EpCAM-high liver cancer stem cells resist natural killer cell–mediated cytotoxicity by upregulating CEACAM1. J ImmunoTher Cancer 8:e000301. https://doi.org/10.1136/jitc-2019-000301

    Article  PubMed  PubMed Central  Google Scholar 

  27. Terry S, Abdou A, Engelsen AST et al (2019) AXL targeting overcomes human lung cancer cell resistance to NK- and CTL-mediated cytotoxicity. Cancer Immunol Res 7:1789–1802. https://doi.org/10.1158/2326-6066.CIR-18-0903

    Article  CAS  PubMed  Google Scholar 

  28. Wu J, Wang F, Liu X, Zhang T, Liu F, Ge X, Mao Y, Hua D (2018) Correlation of IDH1 and B7 H3 expression with prognosis of CRC patients. Eur J Surg Oncol 44:1254–1260. https://doi.org/10.1016/j.ejso.2018.05.005

    Article  PubMed  Google Scholar 

  29. Dong P, Xiong Y, Yue J, Hanley SJB, Watari H (2018) B7H3 as a promoter of metastasis and promising therapeutic target. Front Oncol. https://doi.org/10.3389/fonc.2018.00264

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ni L, Dong C (2017) New B7 family checkpoints in human cancers. Mol Cancer Ther 16:1203–1211. https://doi.org/10.1158/1535-7163.mct-16-0761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Du H, Hirabayashi K, Ahn S et al (2019) Antitumor responses in the absence of toxicity in solid tumors by targeting B7–H3 via chimeric antigen receptor T cells. Cancer Cell 35:221–37.e8. https://doi.org/10.1016/j.ccell.2019.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wohler JE, Smith SS, Barnum SR (2010) Gammadelta T cells: the overlooked T-cell subset in demyelinating disease. J Neurosci Res 88:1–6. https://doi.org/10.1002/jnr.22176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu YL, Ding YP, Tanaka Y, Shen LW, Wei CH, Minato N, Zhang W (2014) Gammadelta T cells and their potential for immunotherapy. Int J Biol Sci 10:119–135. https://doi.org/10.7150/ijbs.7823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Silva-Santos B, Serre K, Norell H (2015) γδ T cells in cancer. Nat Rev Immunol 15:683–691. https://doi.org/10.1038/nri3904

    Article  CAS  PubMed  Google Scholar 

  35. Riond JRS, Nicolau ML et al (2009) In vivo major histocompatibility complex class I (MHCI) expression on MHCIlow tumor cells is regulated by gammadelta T and NK cells during the early steps of tumor growth. Cancer Immunity 9:10

    PubMed  PubMed Central  Google Scholar 

  36. Zocchi MRCD, Venè R et al (2017) Zoledronate can induce colorectal cancer microenvironment expressing BTN3A1 to stimulate effector γδ T cells with antitumor activity. Oncoimmunology 6:e1278099. https://doi.org/10.1080/2162402X.2016.1278099

    Article  PubMed  PubMed Central  Google Scholar 

  37. Li XY, Das I, Lepletier A et al (2018) CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. J Clin Invest 128:2613–2625. https://doi.org/10.1172/JCI98769

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shi L, Lin H, Li G et al (2016) Cisplatin enhances NK cells immunotherapy efficacy to suppress HCC progression via altering the androgen receptor (AR)-ULBP2 signals. Cancer Lett 373:45–56. https://doi.org/10.1016/j.canlet.2016.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frazao A, Colombo M, Fourmentraux-Neves E et al (2017) Shifting the balance of activating and inhibitory natural killer receptor ligands on BRAFV600E melanoma lines with vemurafenib. Cancer Immunol Res 5:582–593. https://doi.org/10.1158/2326-6066.cir-16-0380

    Article  CAS  PubMed  Google Scholar 

  40. Rothe A, Jachimowicz RD, Borchmann S et al (2014) The bispecific immunoligand ULBP2-aCEA redirects natural killer cells to tumor cells and reveals potent anti-tumor activity against colon carcinoma. Int J Cancer 134:2829–2840. https://doi.org/10.1002/ijc.28609

    Article  CAS  PubMed  Google Scholar 

  41. Sun B, Yang D, Dai H et al (2019) Eradication of hepatocellular carcinoma by NKG2D-based CAR-T cells. Cancer Immunol Res 7:1813–1823. https://doi.org/10.1158/2326-6066.cir-19-0026

    Article  CAS  PubMed  Google Scholar 

  42. Duan S, Guo W, Xu Z et al (2019) Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer 18:29. https://doi.org/10.1186/s12943-019-0956-8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Heinemann A, Zhao F, Pechlivanis S, Eberle J, Steinle A, Diederichs S, Schadendorf D, Paschen A (2012) Tumor suppressive microRNAs miR-34a/c control cancer cell expression of ULBP2, a stress-induced ligand of the natural killer cell receptor NKG2D. Cancer Res 72:460–471. https://doi.org/10.1158/0008-5472.CAN-11-1977

    Article  CAS  PubMed  Google Scholar 

  44. Liang HX, Li YH (2020) MiR-873, as a suppressor in cervical cancer, inhibits cells proliferation, invasion and migration via negatively regulating ULBP2. Genes Genom 42:371–382. https://doi.org/10.1007/s13258-019-00905-8

    Article  CAS  Google Scholar 

  45. Breunig C, Pahl J, Küblbeck M et al (2017) MicroRNA-519a-3p mediates apoptosis resistance in breast cancer cells and their escape from recognition by natural killer cells. Cell Death Dis. 8:e2973-e. https://doi.org/10.1038/cddis.2017.364

    Article  CAS  Google Scholar 

  46. Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG, Cerwenka A (2011) Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res 71:5998–6009. https://doi.org/10.1158/0008-5472.CAN-10-3211

    Article  CAS  PubMed  Google Scholar 

  47. Eisele G, Wischhusen J, Mittelbronn M, Meyermann R, Waldhauer I, Steinle A, Weller M, Friese MA (2006) TGF-beta and metalloproteinases differentially suppress NKG2D ligand surface expression on malignant glioma cells. Brain 129:2416–2425. https://doi.org/10.1093/brain/awl205

    Article  PubMed  Google Scholar 

  48. Shi T, Ma Y, Cao L et al (2019) B7–H3 promotes aerobic glycolysis and chemoresistance in colorectal cancer cells by regulating HK2. Cell Death Dis. https://doi.org/10.1038/s41419-019-1549-6

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank all the members of the department of gastroenterology, general surgery, and pathology of the First Affiliated Hospital of Soochow University for their help in collecting clinical samples.

Funding

This study was supported by the National Natural Science Foundation of China (81802843, 81672372, 81372276); Colleges and Universities Natural Science Research Project of Jiangsu Province (18KJB320023, 17KJA310004); Suzhou Science & Technology plan project (SYS2019035, SYS201747, SS2019077).

Author information

Authors and Affiliations

Authors

Contributions

HL, TS and WC designed the experiments; HL, YM, HW, and JL performed most of the experiments; MW and YG contributed to provide clinical samples; YM, NG, and YG assisted with experiments and analysis of the data; XZ and GZ provided administrative, technical, or material support. HL, TS, and WC wrote the manuscript.

Corresponding authors

Correspondence to Tongguo Shi or Weichang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

All animal experiments were performed under the institutional guidelines of the Institutional Animal Care and Use Committee of Soochow University. The experiments involving in tissue samples of patients with CC were approved by the Institutional Review Board of the First Affiliated Hospital of Soochow University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Ma, Y., Wang, M. et al. B7-H3 confers resistance to Vγ9Vδ2 T cell-mediated cytotoxicity in human colon cancer cells via the STAT3/ULBP2 axis. Cancer Immunol Immunother 70, 1213–1226 (2021). https://doi.org/10.1007/s00262-020-02771-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02771-w

Keywords

Navigation