Skip to main content

Advertisement

Log in

Prediction of non-muscle-invasive bladder cancer recurrence during intravesical BCG immunotherapy by use of peripheral blood eosinophil count and percentage: a preliminary report

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Objectives

To determine whether there is an association between blood eosinophil count and percentage with the recurrence of nonmuscle invasive bladder cancer (NMIBC) during Bacillus Calmette-Guérin (BCG) maintenance therapy with our preliminary results.

Methods

A total of 53 patients with NMIBC underwent BCG immunotherapy between January 2015 and September 2018, and met our inclusion criteria were included in the study. The parameters age, gender, smoking status, comorbidity, blood neutrophil, lymphocyte and eosinophil counts, blood eosinophil percentage, previous single postoperative intravesical chemotherapy instillation, tumor characteristic, and total and maintenance dose numbers of BCG were extracted from our medical records and compared between patients with response and with recurrence.

Results

Blood eosinophil count and percentage were significantly higher in patients with recurrence compared to patients with response (0.263 ± 0.37 vs. 0.0134 ± 0.021, p = 0.01 and 0.31 ± 0.29 vs. 0.17 ± 0.27, p = 0.01). Other parameters were similar in patients with recurrence and response. Receiver-operating characteristic analysis showed a considerable diagnostic value of blood eosinophil count and percentage in the prediction of bladder cancer recurrence during BCG immunotherapy.

Conclusion

Blood eosinophil count and percentage in patients with NMIBC can predict the disease recurrence during the BCG immunotherapy. Our research raised new questions and assumptions about the role of eosinophils during BCG immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

None.

Code availability

None.

References

  1. Kang M, Jeong CW, Kwak C, Kim HH, Ku JH (2017) Preoperative neutrophil-lymphocyte ratio can significantly predict mortality outcomes in patients with non-muscle invasive bladder cancer undergoing transurethral resection of bladder tumor. Oncotarget 8:12891–12901. https://doi.org/10.18632/oncotarget.14179

    Article  PubMed  Google Scholar 

  2. Sanli O, Dobruch J, Knowles MA, Burger M, Alemozaffar M, Nielsen ME, Lotan Y (2017) Bladder cancer. Nat Rev Dis Primers 3:17022. https://doi.org/10.1038/nrdp.2017.22

    Article  Google Scholar 

  3. Arends TJ, Nativ O, Maffezzini M, de Cobelli O, Canepa G, Verweij F, Moskovitz B, van der Heijden AG, Witjes JA (2016) Results of a randomised controlled trial comparing intravesical chemohyperthermia with mitomycin C versus bacillus calmette-guerin for adjuvant treatment of patients with intermediate- and high-risk non-muscle-invasive bladder cancer. Eur Urol 69:1046–1052. https://doi.org/10.1016/j.eururo.2016.01.006

    Article  CAS  PubMed  Google Scholar 

  4. Nunez-Nateras R, Castle EP, Protheroe CA et al (2014) Predicting response to bacillus Calmette-Guerin (BCG) in patients with carcinoma in situ of the bladder. Urol Oncol 32(45):e23–30. https://doi.org/10.1016/j.urolonc.2013.06.008

    Article  Google Scholar 

  5. Zlotta AR, Fleshner NE, Jewett MA (2009) The management of BCG failure in non-muscle-invasive bladder cancer: an update. Can Urol Assoc J 3:S199–205

    Article  Google Scholar 

  6. Kamat AM, Li R, O'Donnell MA et al (2018) Predicting response to intravesical bacillus Calmette-Guerin immunotherapy: are we there yet? A systematic review. Eur Urol 73:738–748. https://doi.org/10.1016/j.eururo.2017.10.003

    Article  PubMed  Google Scholar 

  7. Prakash Babu S, Narasimhan PB, Babu S (2019) Eosinophil polymorphonuclear leukocytes in TB: what we know so far. Front Immunol 10:2639. https://doi.org/10.3389/fimmu.2019.02639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kirman J, Zakaria Z, McCoy K, Delahunt B, Le Gros G (2000) Role of eosinophils in the pathogenesis of Mycobacterium bovis BCG infection in gamma interferon receptor-deficient mice. Infect Immun 68:2976–2978. https://doi.org/10.1128/iai.68.5.2976-2978.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Castro AG, Esaguy N, Macedo PM, Aguas AP, Silva MT (1991) Live but not heat-killed mycobacteria cause rapid chemotaxis of large numbers of eosinophils in vivo and are ingested by the attracted granulocytes. Infect Immun 59:3009–3014

    Article  CAS  Google Scholar 

  10. Montironi R, Lopez-Beltran A (2005) The 2004 WHO classification of bladder tumors: a summary and commentary. Int J Surg Pathol 13:143–153. https://doi.org/10.1177/106689690501300203

    Article  PubMed  Google Scholar 

  11. Paner GP, Stadler WM, Hansel DE, Montironi R, Lin DW, Amin MB (2018) Updates in the eighth edition of the tumor-node-metastasis staging classification for urologic cancers. Eur Urol 73:560–569. https://doi.org/10.1016/j.eururo.2017.12.018

    Article  Google Scholar 

  12. Johnston LK, Bryce PJ (2017) Understanding interleukin 33 and its roles in eosinophil development. Front Med 4:51. https://doi.org/10.3389/fmed.2017.00051

    Article  Google Scholar 

  13. Rosenberg HF, Dyer KD, Foster PS (2013) Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13:9–22. https://doi.org/10.1038/nri3341

    Article  CAS  Google Scholar 

  14. Varricchi G, Galdiero MR, Loffredo S, Lucarini V, Marone G, Mattei F, Marone G, Schiavoni G (2018) Eosinophils: the unsung heroes in cancer? Oncoimmunology 7:e1393134. https://doi.org/10.1080/2162402X.2017.1393134

    Article  PubMed  Google Scholar 

  15. Bochner BS (2015) Novel therapies for eosinophilic disorders. Immunol Allergy Clin N Am 35:577–598. https://doi.org/10.1016/j.iac.2015.05.007

    Article  Google Scholar 

  16. Lucarini V, Ziccheddu G, Macchia I et al (2017) IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. Oncoimmunology 6:e1317420. https://doi.org/10.1080/2162402X.2017.1317420

    Article  PubMed  PubMed Central  Google Scholar 

  17. Horiuchi T, Weller PF (1997) Expression of vascular endothelial growth factor by human eosinophils: upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. Am J Respir Cell Mol Biol 17:70–77. https://doi.org/10.1165/ajrcmb.17.1.2796

    Article  CAS  PubMed  Google Scholar 

  18. Folkman J, Shing Y (1992) Angiogenesis. J Biol Chem 267:10931–10934

    Article  CAS  Google Scholar 

  19. Andersen CL, Siersma VD, Hasselbalch HC, Lindegaard H, Vestergaard H, Felding P, de Fine ON, Bjerrum OW (2014) Eosinophilia in routine blood samples as a biomarker for solid tumor development - a study based on the Copenhagen Primary Care Differential Count (CopDiff) Database. Acta Oncol 53:1245–1250. https://doi.org/10.3109/0284186X.2014.887857

    Article  PubMed  Google Scholar 

  20. Saint F, Patard JJ, Groux Muscatelli B, Lefrere Belda MA, Diez G, de Medina S, Abbou CC, Chopin DK (2001) Evaluation of cellular tumour rejection mechanisms in the peritumoral bladder wall after bacillus Calmette-Guerin treatment. BJU Int 88:602–610

    Article  CAS  Google Scholar 

  21. Pichler R, Gruenbacher G, Culig Z, Brunner A, Fuchs D, Fritz J, Gander H, Rahm A, Thurnher M (2017) Intratumoral Th2 predisposition combines with an increased Th1 functional phenotype in clinical response to intravesical BCG in bladder cancer. Cancer Immunol Immunother CII 66:427–440. https://doi.org/10.1007/s00262-016-1945-z

    Article  CAS  PubMed  Google Scholar 

  22. Miyata Y, Sakai H (2015) Predictive markers for the recurrence of nonmuscle invasive bladder cancer treated with intravesical therapy. Dis Mark 2015:857416. https://doi.org/10.1155/2015/857416

    Article  CAS  Google Scholar 

  23. Diny NL, Rose NR, Cihakova D (2017) Eosinophils in autoimmune diseases. Front Immunol 8:484. https://doi.org/10.3389/fimmu.2017.00484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Caldwell JM, Collins MH, Stucke EM, Putnam PE, Franciosi JP, Kushner JP, Abonia JP, Rothenberg ME (2014) Histologic eosinophilic gastritis is a systemic disorder associated with blood and extragastric eosinophilia, TH2 immunity, and a unique gastric transcriptome. J Allergy Clin Immunol 134:1114–1124. https://doi.org/10.1016/j.jaci.2014.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lowe D, Fletcher CD, Gower RL (1984) Tumour-associated eosinophilia in the bladder. J Clin Pathol 37:500–502

    Article  CAS  Google Scholar 

  26. Driss V, Legrand F, Hermann E et al (2009) TLR2-dependent eosinophil interactions with mycobacteria: role of alpha-defensins. Blood 113:3235–3244. https://doi.org/10.1182/blood-2008-07-166595

    Article  CAS  PubMed  Google Scholar 

  27. Borelli V, Vita F, Shankar S, Soranzo MR, Banfi E, Scialino G, Brochetta C, Zabucchi G (2003) Human eosinophil peroxidase induces surface alteration, killing, and lysis of Mycobacterium tuberculosis. Infect Immun 71:605–613

    Article  CAS  Google Scholar 

  28. Siracusano S, Vita F, Abbate R, Ciciliato S, Borelli V, Bernabei M, Zabucchi G (2007) The role of granulocytes following intravesical BCG prophylaxis. Eur Urol 51:1589–1597. https://doi.org/10.1016/j.eururo.2006.11.045 (discussion 97–99)

    Article  PubMed  Google Scholar 

  29. Durrington HJ, Gioan-Tavernier GO, Maidstone RJ et al (2018) Time of day affects eosinophil biomarkers in asthma: implications for diagnosis and treatment. Am J Respir Crit Care Med 198:1578–1581. https://doi.org/10.1164/rccm.201807-1289LE

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sennels HP, Jorgensen HL, Hansen AL, Goetze JP, Fahrenkrug J (2011) Diurnal variation of hematology parameters in healthy young males: the Bispebjerg study of diurnal variations. Scand J Clin Lab Investig 71:532–541. https://doi.org/10.3109/00365513.2011.602422

    Article  CAS  Google Scholar 

  31. Wu HX, Zhuo KQ, Cheng DY (2019) Peripheral blood eosinophil as a biomarker in outcomes of acute exacerbation of chronic obstructive pulmonary disease. Int J Chronic Obstr Pulm Dis 14:3003–3015. https://doi.org/10.2147/COPD.S226783

    Article  Google Scholar 

  32. Pavord ID, Agusti A (2016) Blood eosinophil count: a biomarker of an important treatable trait in patients with airway disease. Eur Respir J 47:1299–1303. https://doi.org/10.1183/13993003.00055-2016

    Article  PubMed  Google Scholar 

  33. Bafadhel M, Pavord ID, Russell REK (2017) Eosinophils in COPD: just another biomarker? Lancet Respir Med 5:747–759. https://doi.org/10.1016/S2213-2600(17)30217-5

    Article  CAS  PubMed  Google Scholar 

  34. Onesti CE, Josse C, Poncin A, Freres P, Poulet C, Bours V, Jerusalem G (2018) Predictive and prognostic role of peripheral blood eosinophil count in triple-negative and hormone receptor-negative/HER2-positive breast cancer patients undergoing neoadjuvant treatment. Oncotarget 9:33719–33733. https://doi.org/10.18632/oncotarget.26120

    Article  PubMed  PubMed Central  Google Scholar 

  35. Moreira A, Leisgang W, Schuler G, Heinzerling L (2017) Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy. Immunotherapy 9:115–121. https://doi.org/10.2217/imt-2016-0138

    Article  CAS  PubMed  Google Scholar 

  36. Sylman JL, Mitrugno A, Atallah M et al (2018) The predictive value of inflammation-related peripheral blood measurements in cancer staging and prognosis. Front Oncol 8:78. https://doi.org/10.3389/fonc.2018.00078

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

MZT: conception and design of the work, literature review, drafting manuscript, analysis, and/or interpretation of the data; AC: design of the work, data collection, and/or processing; IU: design of the work, data collection, and/or processing; EK: data collection and/or processing; FP: data collection and/or processing; SS: data collection and/or processing; EY: conception and design of the work, and literature review; EK: supervision and critical review; AS: supervision and critical review; AYM: supervision and critical review.

Corresponding author

Correspondence to Mustafa Zafer Temiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temiz, M.Z., Colakerol, A., Ulus, I. et al. Prediction of non-muscle-invasive bladder cancer recurrence during intravesical BCG immunotherapy by use of peripheral blood eosinophil count and percentage: a preliminary report. Cancer Immunol Immunother 70, 245–252 (2021). https://doi.org/10.1007/s00262-020-02673-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02673-x

Keywords

Navigation