Skip to main content

Advertisement

Log in

NK1R antagonist decreases inflammation and metastasis of breast carcinoma cells metastasized to liver but not to brain; phenotype-dependent therapeutic and toxic consequences

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Substance P a neuro-immune mediator acts on Neurokinin-1 and -2 receptors (NK1R and NK2R). Inhibitors of NK1R are considered to be safe and effective approaches for cancer treatment since Aprepitant, a non-peptide antagonist of NK1R is widely used for chemotherapy-induced emesis and has cytotoxic and antitumor effects in various models for cancer. On the other hand, our previous findings demonstrated that systemic inhibition of NK1R may decrease cytotoxic anti-tumoral immune response. Hence, actual consequences of inhibition of neurokinin receptors under in vivo conditions in a syngeneic model of carcinoma should be determined. The effects of highly potent and selective non-peptide mouse NK1R and NK2R antagonists RP 67580 and GR 159897, respectively, on metastatic breast carcinoma were evaluated. Specifically, 4T1 breast cancer cells metastasized to brain (denoted as 4TBM) and liver (denoted as 4TLM) were used to induce tumors in Balb-c mice. Changes in tumor growth, metastasis and immune response to cancer cells were determined. We here observed differential effects of NK1R antagonist depended on the subset of metastatic cells. Specifically, inhibition of NK1R markedly increased liver metastasis of tumors formed by 4TBM but not 4TLM cells. On the contrary, NK1R antagonist decreased inflammatory response and liver metastasis in 4TLM-injected mice. 4TLM tumors act more aggressively inducing more inflammatory response compared to 4TBM tumors. Hence, differential effects of NK1R antagonist are at least partly due to extend and type of the inflammatory response evoked by specific subset metastatic cells. These findings demonstrate the necessity for understanding the immunological consequences of tumor-microenvironment interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

NK1R:

Neurokinin-1 receptors

NK2R:

Neurokinin-2 receptors

SP:

Substance P

References

  1. Tayyeb B, Parvin M (2016) Pathogenesis of breast cancer metastasis to brain: a comprehensive approach to the signaling network. Mol Neurobiol 53:446–454. https://doi.org/10.1007/s12035-014-9023-z

    Article  CAS  PubMed  Google Scholar 

  2. Erin N, Kale S, Tanriover G, Koksoy S, Duymus O, Korcum AF (2013) Differential characteristics of heart, liver, and brain metastatic subsets of murine breast carcinoma. Breast Cancer Res Treat 139:677–689. https://doi.org/10.1007/s10549-013-2584-0

    Article  CAS  PubMed  Google Scholar 

  3. Mihanfar A, Aghazadeh Attari J, Mohebbi I, Majidinia M, Kaviani M, Yousefi M, Yousefi B (2019) Ovarian cancer stem cell: a potential therapeutic target for overcoming multidrug resistance. J Cell Physiol 234:3238–3253. https://doi.org/10.1002/jcp.26768

    Article  CAS  PubMed  Google Scholar 

  4. Saffroy M, Beaujouan JC, Torrens Y, Besseyre J, Bergstrom L, Glowinski J (1988) Localization of tachykinin binding sites (NK1, NK2, NK3 ligands) in the rat brain. Peptides 9:227–241. https://doi.org/10.1016/0196-9781(88)90255-0

    Article  CAS  PubMed  Google Scholar 

  5. Munoz M, Rosso M, Covenas R (2010) A new frontier in the treatment of cancer: NK-1 receptor antagonists. Curr Med Chem. 17:504–516. https://doi.org/10.2174/092986710790416308

    Article  CAS  PubMed  Google Scholar 

  6. Rosso M, Robles-Frias MJ, Covenas R, Salinas-Martin MV, Munoz M (2008) The NK-1 receptor is expressed in human primary gastric and colon adenocarcinomas and is involved in the antitumor action of L-733,060 and the mitogenic action of substance P on human gastrointestinal cancer cell lines. Tumour Biol 29:245–254. https://doi.org/10.1159/000152942

    Article  CAS  PubMed  Google Scholar 

  7. Zhou Y, Zhao L, Xiong T, Chen X, Zhang Y, Yu M, Yang J, Yao Z (2013) Roles of full-length and truncated neurokinin-1 receptors on tumor progression and distant metastasis in human breast cancer. Breast Cancer Res Treat 140:49–61. https://doi.org/10.1007/s10549-013-2599-6

    Article  CAS  PubMed  Google Scholar 

  8. Munoz M, Rosso M, Aguilar FJ, Gonzalez-Moles MA, Redondo M, Esteban F (2008) NK-1 receptor antagonists induce apoptosis and counteract substance P-related mitogenesis in human laryngeal cancer cell line HEp-2. Invest New Drugs 26:111–118. https://doi.org/10.1007/s10637-007-9087-y

    Article  CAS  PubMed  Google Scholar 

  9. Munoz M, Perez A, Rosso M, Zamarriego C, Rosso R (2004) Antitumoral action of the neurokinin-1 receptor antagonist L-733 060 on human melanoma cell lines. Melanoma Res 14:183–188. https://doi.org/10.1097/01.cmr.0000129376.22141.a3

    Article  CAS  PubMed  Google Scholar 

  10. Luo W, Sharif TR, Sharif M (1996) Substance P-induced mitogenesis in human astrocytoma cells correlates with activation of the mitogen-activated protein kinase signaling pathway. Cancer Res 56:4983–4991

    CAS  PubMed  Google Scholar 

  11. Munoz M, Covenas R, Esteban F, Redondo M (2015) The substance P/NK-1 receptor system: NK-1 receptor antagonists as anti-cancer drugs. J Biosci 40:441–463

    Article  CAS  PubMed  Google Scholar 

  12. Munoz M, Rosso M, Perez A, Covenas R, Rosso R, Zamarriego C, Piruat JI (2005) The NK1 receptor is involved in the antitumoural action of L-733,060 and in the mitogenic action of substance P on neuroblastoma and glioma cell lines. Neuropeptides 39:427–432

    Article  CAS  PubMed  Google Scholar 

  13. Olver IN (2004) Aprepitant in antiemetic combinations to prevent chemotherapy-induced nausea and vomiting. Int J Clin Pract 58:201–206

    Article  CAS  PubMed  Google Scholar 

  14. Nizam E, Erin N (2018) Differential consequences of neurokinin receptor 1 and 2 antagonists in metastatic breast carcinoma cells; effects independent of substance P. Biomed Pharmacother 108:263–270. https://doi.org/10.1016/j.biopha.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  15. Erin N, Korcum AF, Tanriover G, Kale S, Demir N, Koksoy S (2015) Activation of neuroimmune pathways increases therapeutic effects of radiotherapy on poorly differentiated breast carcinoma. Brain Behav Immun 48:174–185. https://doi.org/10.1016/j.bbi.2015.02.024

    Article  CAS  PubMed  Google Scholar 

  16. Nagakawa O, Ogasawara M, Fujii H, Murakami K, Murata J, Fuse H, Saiki I (1998) Effect of prostatic neuropeptides on invasion and migration of PC-3 prostate cancer cells. Cancer Lett 133:27–33. https://doi.org/10.1016/S0304-3835(98)00186-4

    Article  CAS  PubMed  Google Scholar 

  17. Flageole H, Senterman M, Trudel JL (1992) Substance P increases in vitro lymphokine-activated-killer (LAK) cell cytotoxicity against fresh colorectal cancer cells. J Surg Res 53:445–449. https://doi.org/10.1016/0022-4804(92)90088-h

    Article  CAS  PubMed  Google Scholar 

  18. Singh D, Joshi DD, Hameed M, Qian J, Gascon P, Maloof PB, Mosenthal A, Rameshwar P (2000) Increased expression of preprotachykinin-I and neurokinin receptors in human breast cancer cells: implications for bone marrow metastasis. Proc Natl Acad Sci U S A 97:388–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bigioni M, Benzo A, Irrissuto C, Maggi CA, Goso C (2005) Role of NK-1 and NK-2 tachykinin receptor antagonism on the growth of human breast carcinoma cell line MDA-MB-231. Anticancer Drugs 16:1083–1089. https://doi.org/10.1097/00001813-200511000-00007

    Article  CAS  PubMed  Google Scholar 

  20. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081. https://doi.org/10.1093/carcin/bgp127

    Article  CAS  PubMed  Google Scholar 

  21. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    CAS  PubMed  Google Scholar 

  22. Erin N, Wang N, Xin P, Bui V, Weisz J, Barkan GA, Zhao W, Shearer D, Clawson GA (2009) Altered gene expression in breast cancer liver metastases. Int J Cancer 124:1503–1516. https://doi.org/10.1002/ijc.24131

    Article  CAS  PubMed  Google Scholar 

  23. Beaujouan JC, Heuillet E, Petitet F, Saffroy M, Torrens Y, Glowinski J (1993) Higher potency of RP 67580, in the mouse and the rat compared with other nonpeptide and peptide tachykinin NK1 antagonists. Br J Pharmacol 108:793–800. https://doi.org/10.1111/j.1476-5381.1993.tb12880.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Seabrook GR, Shepheard SL, Williamson DJ, Tyrer P, Rigby M, Cascieri MA, Harrison T, Hargreaves RJ, Hill RG (1996) L-733,060, a novel tachykinin NK1 receptor antagonist; effects in [Ca2 +]i mobilisation, cardiovascular and dural extravasation assays. Eur J Pharmacol 317:129–135. https://doi.org/10.1016/s0014-2999(96)00706-6

    Article  CAS  PubMed  Google Scholar 

  25. Beresford IJ, Sheldrick RL, Ball DI, Turpin MP, Walsh DM, Hawcock AB, Coleman RA, Hagan RM, Tyers MB (1995) GR159897, a potent non-peptide antagonist at tachykinin NK2 receptors. Eur J Pharmacol 272:241–248. https://doi.org/10.1016/0014-2999(94)00655-q

    Article  CAS  PubMed  Google Scholar 

  26. Erin N, Podnos A, Tanriover G, Duymus O, Cote E, Khatri I, Gorczynski RM (2015) Bidirectional effect of CD200 on breast cancer development and metastasis, with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene 34:3860–3870. https://doi.org/10.1038/onc.2014.317

    Article  CAS  PubMed  Google Scholar 

  27. Monaco-Shawver L, Schwartz L, Tuluc F et al (2011) Substance P inhibits natural killer cell cytotoxicity through the neurokinin-1 receptor. J Leukoc Biol 89:113–125. https://doi.org/10.1189/jlb.0410200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marvel D, Gabrilovich DI (2015) Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. J Clin Invest 125:3356–3364. https://doi.org/10.1172/JCI80005

    Article  PubMed  PubMed Central  Google Scholar 

  29. Radinsky R (1995) Modulation of tumor cell gene expression and phenotype by the organ-specific metastatic environment. Cancer Metastasis Rev 14:323–338

    Article  CAS  PubMed  Google Scholar 

  30. Erin N, Ogan N, Yerlikaya A (2018) Secretomes reveal several novel proteins as well as TGF-beta1 as the top upstream regulator of metastatic process in breast cancer. Breast Cancer Res Treat 170:235–250. https://doi.org/10.1007/s10549-018-4752-8

    Article  CAS  PubMed  Google Scholar 

  31. Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139:693–706. https://doi.org/10.1016/j.cell.2009.10.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Storci G, Sansone P, Mari S et al (2010) TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 225:682–691. https://doi.org/10.1002/jcp.22264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lippitz BE (2013) Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 14:e218–e228. https://doi.org/10.1016/S1470-2045(12)70582-X

    Article  CAS  PubMed  Google Scholar 

  34. Mombelli S, Cochaud S, Merrouche Y et al (2015) IL-17A and its homologs IL-25/IL-17E recruit the c-RAF/S6 kinase pathway and the generation of pro-oncogenic LMW-E in breast cancer cells. Sci Rep 5:11874. https://doi.org/10.1038/srep11874

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sinha P, Clements VK, Ostrand-Rosenberg S (2005) Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease. J Immunol 174:636–645. https://doi.org/10.4049/jimmunol.174.2.636

    Article  CAS  PubMed  Google Scholar 

  36. Punt S, Langenhoff JM, Putter H, Fleuren GJ, Gorter A, Jordanova ES (2015) The correlations between IL-17 vs. Th17 cells and cancer patient survival: a systematic review. Oncoimmunology 4:e984547. https://doi.org/10.4161/2162402X.2014.984547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu D, Wu P, Huang Q, Liu Y, Ye J, Huang J (2013) Interleukin-17: a promoter in colorectal cancer progression. Clin Dev Immunol 2013:436307. https://doi.org/10.1155/2013/436307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Divito SJ, Morelli AE, Larregina AT (2011) Role of neurokinin-1 receptor in the initiation and maintenance of skin chronic inflammatory diseases. Immunol Res 50:195–201. https://doi.org/10.1007/s12026-011-8219-9

    Article  CAS  PubMed  Google Scholar 

  39. Erin N, Tanriover G, Curry A, Akman M, Duymus O, Gorczynski R (2018) CD200fc enhances anti-tumoral immune response and inhibits visceral metastasis of breast carcinoma. Oncotarget. 9:19147–19158. https://doi.org/10.18632/oncotarget.24931

    Article  PubMed  PubMed Central  Google Scholar 

  40. Feistritzer C, Clausen J, Sturn DH, Djanani A, Gunsilius E, Wiedermann CJ, Kahler CM (2003) Natural killer cell functions mediated by the neuropeptide substance P. Regul Pept 116:119–126. https://doi.org/10.1016/s0167-0115(03)00193-9

    Article  CAS  PubMed  Google Scholar 

  41. Lai JP, Ho WZ, Kilpatrick LE, Wang X, Tuluc F, Korchak HM, Douglas SD (2006) Full-length and truncated neurokinin-1 receptor expression and function during monocyte/macrophage differentiation. Proc Natl Acad Sci U S A 103:7771–7776. https://doi.org/10.1073/pnas.0602563103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Spitsin S, Pappa V, Douglas SD (2018) Truncation of neurokinin-1 receptor-Negative regulation of substance P signaling. J Leukoc Biol. https://doi.org/10.1002/JLB.3MIR0817-348R

    Article  PubMed  Google Scholar 

  43. Caberlotto L, Hurd YL, Murdock P, Wahlin JP, Melotto S, Corsi M, Carletti R (2003) Neurokinin 1 receptor and relative abundance of the short and long isoforms in the human brain. Eur J Neurosci 17:1736–1746. https://doi.org/10.1046/j.1460-9568.2003.02600.x

    Article  PubMed  Google Scholar 

  44. Mantyh PW, Rogers SD, Ghilardi JR, Maggio JE, Mantyh CR, Vigna SR (1996) Differential expression of two isoforms of the neurokinin-1 (substance P) receptor in vivo. Brain Res 719:8–13. https://doi.org/10.1016/0006-8993(96)00050-9

    Article  CAS  PubMed  Google Scholar 

  45. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444. https://doi.org/10.1038/nature07205

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by funds from TÜBITAK 1002 project no: 214S389.

Author information

Authors and Affiliations

Authors

Contributions

EN and NE carried out the experiments and performed the analysis. SK supervised and involved in analysis of the immunological experiments. NE conceived and planned the experiments as well as wrote the manuscript with support from EN and SK.

Corresponding author

Correspondence to Nuray Erin.

Ethics declarations

Conflict of interest

The author declares that she has no conflict of interest.

Ethical approval and ethical standards for animal work

All animal experimentation was performed following the guidelines of an accredited animal care committee. Ethical approval from Akdeniz University ethics committee supervising studies involving animals was given to NE (no: 10.02.2014) and performed following guidelines of an accredited animal care committee.

Animal source

Wild-type (WT) female BALB/c mice were purchased from Kobay Research Animal Laboratory, Ankara Turkey.

Cell line authentication

4T1 cells were gift from Dr. Danny Welch. The cell lines used were derived from 4T1 cells metastasized to different organs by. Dr. Erin. Hence authentication was not possible.

Informed consent

Research does not involve human so ‘Informed consent’ is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizam, E., Köksoy, S. & Erin, N. NK1R antagonist decreases inflammation and metastasis of breast carcinoma cells metastasized to liver but not to brain; phenotype-dependent therapeutic and toxic consequences. Cancer Immunol Immunother 69, 1639–1650 (2020). https://doi.org/10.1007/s00262-020-02574-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-020-02574-z

Keywords

Navigation