Skip to main content

Advertisement

Log in

Partners in crime: TNFα-based networks promoting cancer progression

  • Focused Research Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Current therapeutic approaches in malignancy are often based on combination therapies, reflecting present understanding of the way different players act together in cancer. The cooperative activity of several elements can potentiate the pro-metastatic functions of the cancer cells and of the tumor microenvironment (TME), together leading to a more aggressive disease phenotype. The design of improved therapeutic modalities requires better identification of networks that act at specific cancer-related settings, and of the molecular mechanisms involved. Such studies will indicate if therapies that co-target several factors or their receptors, simultaneously, could apply. Also, by delineating the intracellular pathways that are activated under such cooperative activities, it will be possible to determine whether to inhibit one specific molecular route that is shared by the different partners, or alternatively, design modalities that jointly target intracellular components acting in concert. This Focused Research Review illuminates the therapeutic relevance of this research field by describing our published findings in breast cancer-related publications, which identified networks that are established by the pro-inflammatory/pro-metastatic cytokine TNFα. It describes the additive/synergistic activities of TNFα with other soluble factors residing at the TME (e.g., IL-1β, TGFβ1, estrogen, EGF), with intracellular components such as the Ras oncogene, and with the tumor-stroma contexture through the activation of molecular cascades (Notch). The roles of the p65 (NF-κB) pathway—acting alone or in intricate relationships with other intracellular mechanisms—are described, the “TNFα-based network” is discussed as a general paradigm in malignancy and its clinical implications in cancer therapy are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

CAFs:

Cancer-associated fibroblasts

CSCs:

Cancer stem cells

EGF:

Epithelial growth factor

EMT:

Epithelial-to-mesenchymal transition

MSCs:

Mesenchymal stem cells

PGE2:

Prostaglandin E2

TGFβ:

Transforming growth factor β

TME:

Tumor microenvironment

TNBC:

Triple negative breast cancer

TNFα:

Tumor necrosis factor α

References

  1. Greten FR, Grivennikov SI (2019) Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51:27–41. https://doi.org/10.1016/j.immuni.2019.06.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Maman S, Witz IP (2018) A history of exploring cancer in context. Nat Rev Cancer 18:359–376. https://doi.org/10.1038/s41568-018-0006-7

    Article  CAS  PubMed  Google Scholar 

  3. Aggarwal BB, Gupta SC, Kim JH (2012) Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey. Blood 119:651–665. https://doi.org/10.1182/blood-2011-04-325225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Waters JP, Pober JS, Bradley JR (2013) Tumour necrosis factor and cancer. J Pathol 230:241–248. https://doi.org/10.1002/path.4188

    Article  CAS  PubMed  Google Scholar 

  5. Balkwill F (2009) Tumour necrosis factor and cancer. Nat Rev Cancer 9:361–371. https://doi.org/10.1038/nrc2628

    Article  CAS  PubMed  Google Scholar 

  6. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081. https://doi.org/10.1093/carcin/bgp127

    Article  CAS  PubMed  Google Scholar 

  7. Pusztai L, Clover LM, Cooper K, Starkey PM, Lewis CE, McGee JO (1994) Expression of tumour necrosis factor alpha and its receptors in carcinoma of the breast. Br J Cancer 70:289–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garcia-Tunon I, Ricote M, Ruiz A, Fraile B, Paniagua R, Royuela M (2006) Role of tumor necrosis factor-alpha and its receptors in human benign breast lesions and tumors (in situ and infiltrative). Cancer Sci 97:1044–1049. https://doi.org/10.1111/j.1349-7006.2006.00277.x

    Article  CAS  PubMed  Google Scholar 

  9. Balkwill FR, Mantovani A (2012) Cancer-related inflammation: common themes and therapeutic opportunities. Semin Cancer Biol 22:33–40. https://doi.org/10.1016/j.semcancer.2011.12.005

    Article  CAS  PubMed  Google Scholar 

  10. Bussard KM, Mutkus L, Stumpf K, Gomez-Manzano C, Marini FC (2016) Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Res 18:84. https://doi.org/10.1186/s13058-016-0740-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Soria G, Ofri-Shahak M, Haas I et al (2011) Inflammatory mediators in breast cancer: coordinated expression of TNFalpha & IL-1beta with CCL2 & CCL5 and effects on epithelial-to-mesenchymal transition. BMC Cancer 11:130. https://doi.org/10.1186/1471-2407-11-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Roebuck KA, Carpenter LR, Lakshminarayanan V, Page SM, Moy JN, Thomas LL (1999) Stimulus-specific regulation of chemokine expression involves differential activation of the redox-responsive transcription factors AP-1 and NF-kappaB. J Leukoc Biol 65:291–298

    Article  CAS  PubMed  Google Scholar 

  13. Leibovich-Rivkin T, Liubomirski Y, Bernstein B, Meshel T, Ben-Baruch A (2013) Inflammatory factors of the tumor microenvironment induce plasticity in nontransformed breast epithelial cells: EMT, invasion, and collapse of normally organized breast textures. Neoplasia 15:1330–1346. https://doi.org/10.1593/neo.131688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Weitzenfeld P, Meron N, Leibovich-Rivkin T, Meshel T, Ben-Baruch A (2013) Progression of luminal breast tumors is promoted by menage a trois between the inflammatory cytokine TNFalpha and the hormonal and growth-supporting arms of the tumor microenvironment. Mediat Inflamm 2013:720536. https://doi.org/10.1155/2013/720536

    Article  CAS  Google Scholar 

  15. Leibovich-Rivkin T, Liubomirski Y, Meshel T, Abashidze A, Brisker D, Solomon H, Rotter V, Weil M, Ben-Baruch A (2014) The inflammatory cytokine TNFalpha cooperates with Ras in elevating metastasis and turns WT-Ras to a tumor-promoting entity in MCF-7 cells. BMC Cancer 14:158. https://doi.org/10.1186/1471-2407-14-158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lerrer S, Liubomirski Y, Bott A et al (2017) Co-inflammatory roles of TGFbeta1 in the presence of TNFalpha drive a pro-inflammatory fate in mesenchymal stem cells. Front Immunol 8:479. https://doi.org/10.3389/fimmu.2017.00479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liubomirski Y, Lerrer S, Meshel T, Rubinstein-Achiasaf L, Morein D, Wiemann S, Korner C, Ben-Baruch A (2019) Tumor-stroma-inflammation networks promote pro-metastatic chemokines and aggressiveness characteristics in triple-negative breast cancer. Front Immunol 10:757. https://doi.org/10.3389/fimmu.2019.00757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liubomirski Y, Lerrer S, Meshel T et al (2019) Notch-mediated tumor-stroma-inflammation networks promote invasive properties and CXCL8 expression in triple-negative breast cancer. Front Immunol 10:804. https://doi.org/10.3389/fimmu.2019.00804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alfaro C, Sanmamed MF, Rodriguez-Ruiz ME et al (2017) Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev 60:24–31. https://doi.org/10.1016/j.ctrv.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  20. Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ (2016) Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget 7:28697–28710. https://doi.org/10.18632/oncotarget.7376

    Article  PubMed  PubMed Central  Google Scholar 

  21. Aldinucci D, Colombatti A (2014) The inflammatory chemokine CCL5 and cancer progression. Mediat Inflamm 2014:292376. https://doi.org/10.1155/2014/292376

    Article  CAS  Google Scholar 

  22. Sedger LM, McDermott MF (2014) TNF and TNF-receptors: from mediators of cell death and inflammation to therapeutic giants - past, present and future. Cytokine Growth Factor Rev 25:453–472. https://doi.org/10.1016/j.cytogfr.2014.07.016

    Article  CAS  PubMed  Google Scholar 

  23. Al-Hatamleh MAI, Ahmad S, Boer JC, Lim J, Chen X, Plebanski M, Mohamud R (2019) A perspective review on the role of nanomedicine in the modulation of TNF-TNFR2 axis in breast cancer immunotherapy. J Oncol 2019:6313242. https://doi.org/10.1155/2019/6313242

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ben-Baruch A (2012) The tumor-promoting flow of cells into, within and out of the tumor site: regulation by the inflammatory axis of TNFalpha and chemokines. Cancer Microenviron 5:151–164. https://doi.org/10.1007/s12307-011-0094-3

    Article  CAS  PubMed  Google Scholar 

  25. Hamaguchi T, Wakabayashi H, Matsumine A, Sudo A, Uchida A (2011) TNF inhibitor suppresses bone metastasis in a breast cancer cell line. Biochem Biophys Res Commun 407:525–530. https://doi.org/10.1016/j.bbrc.2011.03.051

    Article  CAS  PubMed  Google Scholar 

  26. Warren MA, Shoemaker SF, Shealy DJ, Bshar W, Ip MM (2009) Tumor necrosis factor deficiency inhibits mammary tumorigenesis and a tumor necrosis factor neutralizing antibody decreases mammary tumor growth in neu/erbB2 transgenic mice. Mol Cancer Ther 8:2655–2663. https://doi.org/10.1158/1535-7163.mct-09-0358

    Article  CAS  PubMed  Google Scholar 

  27. Yu M, Zhou X, Niu L et al (2013) Targeting transmembrane TNF-alpha suppresses breast cancer growth. Cancer Res 73:4061–4074. https://doi.org/10.1158/0008-5472.CAN-12-3946

    Article  CAS  PubMed  Google Scholar 

  28. Rubio MF, Werbajh S, Cafferata EG, Quaglino A, Colo GP, Nojek IM, Kordon EC, Nahmod VE, Costas MA (2006) TNF-alpha enhances estrogen-induced cell proliferation of estrogen-dependent breast tumor cells through a complex containing nuclear factor-kappa B. Oncogene 25:1367–1377. https://doi.org/10.1038/sj.onc.1209176

    Article  CAS  PubMed  Google Scholar 

  29. Rivas MA, Tkach M, Beguelin W, Proietti CJ, Rosemblit C, Charreau EH, Elizalde PV, Schillaci R (2009) Transactivation of ErbB-2 induced by tumor necrosis factor alpha promotes NF-kappaB activation and breast cancer cell proliferation. Breast Cancer Res Treat 122:111–124. https://doi.org/10.1007/s10549-009-0546-3

    Article  CAS  PubMed  Google Scholar 

  30. Qiao Y, He H, Jonsson P, Sinha I, Zhao C, Dahlman-Wright K (2016) AP-1 is a key regulator of proinflammatory cytokine TNFalpha-mediated triple-negative breast cancer progression. J Biol Chem 291:5068–5079. https://doi.org/10.1074/jbc.M115.702571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eroles P, Bosch A, Perez-Fidalgo JA, Lluch A (2012) Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev 38:698–707. https://doi.org/10.1016/j.ctrv.2011.11.005

    Article  CAS  PubMed  Google Scholar 

  32. Jiang X, Shapiro DJ (2014) The immune system and inflammation in breast cancer. Mol Cell Endocrinol 382:673–682. https://doi.org/10.1016/j.mce.2013.06.003

    Article  CAS  PubMed  Google Scholar 

  33. Mantovani A, Barajon I, Garlanda C (2018) IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev 281:57–61. https://doi.org/10.1111/imr.12614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Miles DW, Happerfield LC, Naylor MS, Bobrow LG, Rubens RD, Balkwill FR (1994) Expression of tumour necrosis factor (TNF alpha) and its receptors in benign and malignant breast tissue. Int J Cancer 56:777–782

    Article  CAS  PubMed  Google Scholar 

  35. Deblois G, Giguere V (2013) Oestrogen-related receptors in breast cancer: control of cellular metabolism and beyond. Nat Rev Cancer 13:27–36. https://doi.org/10.1038/nrc3396

    Article  CAS  PubMed  Google Scholar 

  36. Weitzenfeld P, Kossover O, Korner C, Meshel T, Wiemann S, Seliktar D, Legler DF, Ben-Baruch A (2016) Chemokine axes in breast cancer: factors of the tumor microenvironment reshape the CCR7-driven metastatic spread of luminal-A breast tumors. J Leukoc Biol 99:1009–1025. https://doi.org/10.1189/jlb.3MA0815-373R

    Article  CAS  PubMed  Google Scholar 

  37. Weitzenfeld P, Meshel T, Ben-Baruch A (2016) Microenvironmental networks promote tumor heterogeneity and enrich for metastatic cancer stem-like cells in Luminal-A breast tumor cells. Oncotarget 7:81123–81143. https://doi.org/10.18632/oncotarget.13213

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sihto H, Lundin J, Lundin M et al (2011) Breast cancer biological subtypes and protein expression predict for the preferential distant metastasis sites: a nationwide cohort study. Breast Cancer Res 13:R87. https://doi.org/10.1186/bcr2944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kalluri R (2016) The biology and function of fibroblasts in cancer. Nat Rev Cancer 16:582–598. https://doi.org/10.1038/nrc.2016.73

    Article  CAS  PubMed  Google Scholar 

  40. Cuiffo BG, Karnoub AE (2012) Mesenchymal stem cells in tumor development: emerging roles and concepts. Cell Adh Migr 6:220–230. https://doi.org/10.4161/cam.20875

    Article  PubMed  PubMed Central  Google Scholar 

  41. Goldstein RH, Reagan MR, Anderson K, Kaplan DL, Rosenblatt M (2010) Human bone marrow-derived MSCs can home to orthotopic breast cancer tumors and promote bone metastasis. Cancer Res 70:10044–10050. https://doi.org/10.1158/0008-5472.CAN-10-1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Karnoub AE, Dash AB, Vo AP et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563. https://doi.org/10.1038/nature06188

    Article  CAS  PubMed  Google Scholar 

  43. Batlle E, Massague J (2019) Transforming growth factor-beta signaling in immunity and cancer. Immunity 50:924–940. https://doi.org/10.1016/j.immuni.2019.03.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Umamaheswaran S, Dasari SK, Yang P, Lutgendorf SK, Sood AK (2018) Stress, inflammation, and eicosanoids: an emerging perspective. Cancer Metastasis Rev 37:203–211. https://doi.org/10.1007/s10555-018-9741-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lamy M, Ferreira A, Dias JS, Braga S, Silva G, Barbas A (2017) Notch-out for breast cancer therapies. N Biotechnol 39:215–221. https://doi.org/10.1016/j.nbt.2017.08.004

    Article  CAS  PubMed  Google Scholar 

  46. Katanov C, Lerrer S, Liubomirski Y et al (2015) Regulation of the inflammatory profile of stromal cells in human breast cancer: prominent roles for TNF-alpha and the NF-kappaB pathway. Stem Cell Res Ther 6:87. https://doi.org/10.1186/s13287-015-0080-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li R, Hebert JD, Lee TA, Xing H, Boussommier-Calleja A, Hynes RO, Lauffenburger DA, Kamm RD (2017) Macrophage-secreted TNFalpha and TGFbeta1 influence migration speed and persistence of cancer cells in 3D tissue culture via independent pathways. Cancer Res 77:279–290. https://doi.org/10.1158/0008-5472.CAN-16-0442

    Article  CAS  PubMed  Google Scholar 

  48. Jing Y, Han Z, Liu Y et al (2012) Mesenchymal stem cells in inflammation microenvironment accelerates hepatocellular carcinoma metastasis by inducing epithelial-mesenchymal transition. PLoS One 7:e43272. https://doi.org/10.1371/journal.pone.0043272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu Y, Han ZP, Zhang SS et al (2011) Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem 286:25007–25015. https://doi.org/10.1074/jbc.M110.213108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ren G, Zhang L, Zhao X, Xu G, Zhang Y, Roberts AI, Zhao RC, Shi Y (2008) Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell 2:141–150. https://doi.org/10.1016/j.stem.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  51. De Marco P, Lappano R, De Francesco EM et al (2016) GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1beta/IL1R1 response. Sci Rep 6:24354. https://doi.org/10.1038/srep24354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schauer IG, Zhang J, Xing Z, Guo X, Mercado-Uribe I, Sood AK, Huang P, Liu J (2013) Interleukin-1beta promotes ovarian tumorigenesis through a p53/NF-kappaB-mediated inflammatory response in stromal fibroblasts. Neoplasia 15:409–420. https://doi.org/10.1593/neo.121228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Li HJ, Reinhardt F, Herschman HR, Weinberg RA (2012) Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2:840–855. https://doi.org/10.1158/2159-8290.cd-12-0101

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks all members of her group and all collaborators who contributed to the findings described in this review.

Funding

The respective funding sources are acknowledged in the papers of the Ben-Baruch research group which are cited in this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adit Ben-Baruch.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is a Focused Research Review based on a presentation given at the Sixth International Conference on Cancer Immunotherapy and Immunomonitoring (CITIM 2019), held in Tbilisi, Georgia, 29th April–2nd May 2019. It is part of a series of CITIM 2019 papers in Cancer Immunology, Immunotherapy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben-Baruch, A. Partners in crime: TNFα-based networks promoting cancer progression. Cancer Immunol Immunother 69, 263–273 (2020). https://doi.org/10.1007/s00262-019-02435-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-019-02435-4

Keywords

Navigation