Skip to main content

Advertisement

Log in

Quantification of altered tissue turnover in a liquid biopsy: a proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immuno-therapy has begun to revolutionize cancer treatment. However, despite the significant progress achieved in regard to the duration of clinical benefits, a substantial number of patients do not respond to these therapies. To improve the outcome of patients receiving immuno-therapy, there is a need for novel biomarkers that can predict and monitor treatment. Tumor microenvironment alterations, more specifically the state of chronic inflammation and desmoplasia (tumor fibrosis), are important factors to consider in this context. Here, we discuss the potential for quantification of altered tissue turnover in a liquid biopsy as a proposed precision medicine tool to assess chronic inflammation and desmoplasia in the immuno-oncology (IO) setting. We highlight the need for novel non-invasive biomarkers in IO and the importance of addressing tumor microenvironment alterations. We focus on desmoplasia and extracellular matrix (ECM) remodeling, and how the composition of the ECM defines T-cell permissiveness in the tumor microenvironment and opens up the possibility for associated liquid biopsy biomarkers. Moreover, we address the importance of the assessment of chronic inflammation, primarily macrophage activity, in a liquid biopsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ANGPT2:

Angiopoietin 2

AS:

Ankylosing spondylitis

BM:

Basement membrane

B-RAF:

Proto-oncogene B-Raf

CAF:

Cancer-associated fibroblast

CD:

Crohn’s disease

CDx:

Companion diagnostic

CTC:

Circulating tumor cell

ctDNA:

Circulating tumor DNA

Dt-GCT:

Diffuse-type giant cell tumor

ECM:

Extracellular matrix

FAK:

Focal adhesion kinase

FGFR:

Fibroblast growth factor receptor

GrzB:

Granzyme B

IO:

Immuno-oncology

IPF:

Idiopathic pulmonary fibrosis

LOX:

Lysyl oxidase

mCRC:

Metastatic colorectal cancer

miRNA:

MicroRNA

MMP:

Matrix metalloprotease

NSCLC:

Non-small cell lung cancer

PAD:

Peptidylarginine deiminase

PDAC:

Pancreas ductal adenocarcinoma

PRO-C3:

Pro-peptide of type III collagen formation

PTM:

Post-translational modification

RA:

Rheumatoid arthritis

SCLC:

Small cell lung cancer

SHH:

Sonic hedgehog

SRC:

Proto-oncogene tyrosine-protein kinase Src

TAM:

Tumor-associated macrophage

VEGFR:

Vascular endothelial growth factor receptor

VICM:

MMP-degraded and citrullinated vimentin

References

  1. Ciardiello F, Arnold D, Casali PG et al (2014) Delivering precision medicine in oncology today and in future-the promise and challenges of personalised cancer medicine: a position paper by the European Society for Medical Oncology (ESMO). Ann Oncol 25:1673–1678. doi:10.1093/annonc/mdu217

    Article  CAS  PubMed  Google Scholar 

  2. Garon EB, Leighl NB, Rizvi NA et al (2014) Safety and clinical activity of MK-3475 in previously treated patients (pts) with non-small cell lung cancer (NSCLC). J Clin Oncol. 32: suppl; abstr 8020. doi:10.1200/jco.2014.32.15_suppl.8020

  3. Gettinger SN, Shepherd FA, Antonia SJ et al (2014) First-line nivolumab (anti-PD-1; BMS-936558, ONO-4538) monotherapy in advanced NSCLC: Safety, efficacy, and correlation of outcomes with PD-L1 status. J Clin Oncol. 32: suppl; abstr 8024. doi:10.1200/jco.2014.32.15_suppl.8024

  4. Brahmer JR, Rizvi NA, Lutzky J et al (2014) Clinical activity and biomarkers of MEDI4736, an anti-PD-L1 antibody, in patients with NSCLC. J Clin Oncol. 32:suppl; abstr 8021. doi:10.1200/jco.2014.32.15_suppl.8021

  5. Elmore JG, Longton GM, Carney PA et al (2015) Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313:1122–1132. doi:10.1001/jama.2015.1405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Janku F (2014) Tumor heterogeneity in the clinic: is it a real problem? Ther Adv Med Oncol 6:43–51. doi:10.1177/1758834013517414

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dracopoli NC, Boguski MS (2017) The evolution of oncology companion diagnostics from signal transduction to immuno-oncology. Trends Pharmacol Sci 38:41–54. doi:10.1016/j.tips.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  8. Wu X, Giobbie-Hurder A, Liao X et al (2017) Angiopoietin-2 as a biomarker and target for immune checkpoint therapy. Cancer Immunol Res 5:17–29. doi:10.1158/2326-6066.CIR-16-0206

    Article  CAS  PubMed  Google Scholar 

  9. Brücher BL, Jamall IS (2014) Epistemology of the origin of cancer: a new paradigm. BMC Cancer 14:331. doi:10.1186/1471-2407-14-331

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shacter E, Weitzman SA (2002) Chronic inflammation and cancer. Oncology 16:217–226

    PubMed  Google Scholar 

  11. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401. doi:10.1038/nrc1877

    Article  CAS  PubMed  Google Scholar 

  12. Kauppila S, Stenback F, Risteli J et al (1998) Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J Pathol 186:262–268. doi:10.1002/(SICI)1096-9896(1998110)186:3<262:AID-PATH191>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  13. Jenkins RG, Simpson JK, Saini G et al (2015) Longitudinal change in collagen degradation biomarkers in idiopathic pulmonary fibrosis: an analysis from the prospective, multicentre PROFILE study. Lancet Respir Med 3:462–472. doi:10.1016/S2213-2600(15)00048-X

    Article  CAS  PubMed  Google Scholar 

  14. Karsdal MA, Nielsen MJ, Sand JM et al (2013) Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 11:70–92. doi:10.1089/adt.2012.474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437. doi:10.1038/nm.3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Balkwill FR, Capasso M, Hagemann T (2012) The tumor microenvironment at a glance. J Cell Sci 125:5591–5596. doi:10.1242/jcs.116392

    Article  CAS  PubMed  Google Scholar 

  17. Páez D, Labonte MJ, Bohanes P et al (2012) Cancer dormancy: a model of early dissemination and late cancer recurrence. Clin Cancer Res 18:645–653. doi:10.1158/1078-0432.CCR-11-2186

    Article  PubMed  Google Scholar 

  18. Folkman J, Kalluri R (2004) Cancer without disease. Nature 427:787. doi:10.1038/427787a

    Article  CAS  PubMed  Google Scholar 

  19. Maffini MV, Soto AM, Calabro JM et al (2004) The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117:1495–1502. doi:10.1242/jcs.01000

    Article  CAS  PubMed  Google Scholar 

  20. Barcellos-Hoff MH, Ravani SA (2000) Irradiated mammary gland stroma promotes the expression of tumorigenic potential by unirradiated epithelial cells. Cancer Res 60:1254–1260

    CAS  PubMed  Google Scholar 

  21. Maffini MV, Calabro JM, Soto AM, Sonnenschein C (2005) Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma. Am J Pathol 167:1405–1410. doi:10.1016/S0002-9440(10)61227-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. Weaver VM, Petersen OW, Wang F et al (1997) Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 137:231–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bissell MJ, Hines WC (2011) Why don’ t we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med 17:320–329. doi:10.1038/nm.2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Cox TR, Erler JT (2014) Molecular pathways: connecting fibrosis and solid tumor metastasis. Clin Cancer Res 20:3637–3643. doi:10.1158/1078-0432.CCR-13-1059

    Article  CAS  PubMed  Google Scholar 

  25. Bissell MJ, Radisky DC, Rizki A et al (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70:537–546. doi:10.1046/j.1432-0436.2002.700907.x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fata JE, Werb Z, Bissell MJ (2004) Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Res 6:1–11. doi:10.1186/bcr634

    Article  CAS  PubMed  Google Scholar 

  27. Guo X, Wu Y, Hathaway HJ, Hartley RS (2012) Microenvironmental control of the breast cancer cell cycle. Anat Rec 295:553–562. doi:10.1002/ar.22417

    Article  CAS  Google Scholar 

  28. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK (2015) Extracellular matrix structure. Adv Drug Deliv Rev 97:4–27. doi:10.1016/j.addr.2015.11.001

    Article  PubMed  Google Scholar 

  29. Mason SD, Joyce JA (2011) Proteolytic networks in cancer. Trends Cell Biol 21:228–237. doi:10.1016/j.tcb.2010.12.002

    Article  CAS  PubMed  Google Scholar 

  30. Lu P, Takai K, Weaver VM, Werb Z (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 3. doi:10.1101/cshperspect.a005058

  31. Martin MD, Matrisian LM (2007) The other side of MMPs: protective roles in tumor progression. Cancer Metastasis Rev 26:717–724. doi:10.1007/s10555-007-9089-4

    Article  CAS  PubMed  Google Scholar 

  32. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2:161–174. doi:10.1038/nrc745

    Article  CAS  PubMed  Google Scholar 

  33. Zucker S, Cao J (2010) Matrix Metalloproteinases and cancer cell invasion/metastasis. In: Bagley RG (ed) The tumor microenvironment, 1st edn. Springer, New York, pp 531–554. doi:10.1007/978-1-4419-6615-5

    Chapter  Google Scholar 

  34. Payne SL, Hendrix MJ, Kirschmann DA (2007) Paradoxical roles for lysyl oxidases in cancer—a prospect. J Cell Biochem 101:1338–1354. doi:10.1002/jcb.21371

    Article  CAS  PubMed  Google Scholar 

  35. Egeblad M, Rasch MG, Weaver VM (2010) Dynamic interplay between the collagen scaffold and tumor evolution. Curr Opin Cell Biol 22:697–706. doi:10.1016/j.ceb.2010.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Baker A-M, Bird D, Lang G et al (2013) Lysyl oxidase enzymatic function increases stiffness to drive colorectal cancer progression through FAK. Oncogene 32:1863–1868. doi:10.1038/onc.2012.202

    Article  CAS  PubMed  Google Scholar 

  37. Feig C, Gopinathan A, Neesse A et al (2012) The pancreas cancer microenvironment. Clin Cancer Res 18:4266–4276. doi:10.1158/1078-0432.CCR-11-3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Whatcott CJ, Diep CH, Jiang P et al (2015) Desmoplasia in primary tumors and metastatic lesions of pancreatic cancer. Clin Cancer Res 21:3561–3568. doi:10.1158/1078-0432.CCR-14-1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rhim AD, Oberstein PE, Thomas DH et al (2014) Stromal elements act to restrain, rather than support, pancreatic ductal adenocarcinoma. Cancer Cell 25:735–747. doi:10.1016/j.ccr.2014.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Özdemir BC, Pentcheva-Hoang T, Carstens JL et al (2014) Depletion of carcinoma-associated fibroblasts and fibrosis induces immunosuppression and accelerates pancreas cancer with reduced survival. Cancer Cell 25:719–734. doi:10.1016/j.ccr.2014.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hanash SM, Baik CS, Kallioniemi O (2011) Emerging molecular biomarkers—blood-based strategies to detect and monitor cancer. Nat Rev Clin Oncol 8:142–150. doi:10.1038/nrclinonc.2010.220

    Article  PubMed  Google Scholar 

  42. Risteli L, Koivula MK, Risteli J (2014) Procollagen assays in cancer. Adv Clin Chem 66:79–100

    Article  CAS  PubMed  Google Scholar 

  43. Kauppila A, Puistola U, Risteli J, Risteli L (1989) Amino-terminal propeptide of type III procollagen: a new prognosis indicator in human ovarian cancer. Cancer Res 49:1885–1889

    CAS  PubMed  Google Scholar 

  44. Plebani M, Basso D, Roveroni G et al (1997) N-terminal peptide of type III procollagen: a possible predictor of colorectal carcinoma recurrence. Cancer 79:1299–1303

    Article  CAS  PubMed  Google Scholar 

  45. Jansen C, Leeming DJ, Mandorfer M et al (2014) PRO-C3-levels in patients with HIV/HCV-co-infection reflect fibrosis stage and degree of portal hypertension. PLoS ONE 9:e108544. doi:10.1371/journal.pone.0108544

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nielsen MJ, Veidal SS, Karsdal MA et al (2015) Plasma Pro-C3 (N-terminal type III collagen propeptide) predicts fibrosis progression in patients with chronic hepatitis C. Liver Int 35:429–437. doi:10.1111/liv.12700

    Article  CAS  PubMed  Google Scholar 

  47. Nielsen MJ, Nedergaard AF, Sun S et al (2013) The neo-epitope specific PRO-C3 ELISA measures true formation of type III collagen associated with liver and muscle parameters. Am J Transl Res 5:303–315

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kehlet SN, Sanz-Pamplona R, Brix S et al (2016) Excessive collagen turnover products are released during colorectal cancer progression and elevated in serum from metastatic colorectal cancer patients. Sci Rep 6:30599. doi:10.1038/srep30599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leitzel K, Ali SMi, Vasekar MK et al (2016) Serum collagen fragments and outcomes in hormone receptor-positive metastatic breast cancer. J Clin Oncol. 34: suppl; abstr 539. doi:10.1200/JCO.2016.34.15_suppl.539

  50. Gajewski TF, Schreiber H, Fu Y-X (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014–1022. doi:10.1038/ni.2703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abastado JP (2012) The next challenge in cancer immunotherapy: controlling T-cell traffic to the tumor. Cancer Res 72:2159–2161. doi:10.1158/0008-5472.CAN-11-3538

    Article  CAS  PubMed  Google Scholar 

  52. Salmon H, Franciszkiewicz K, Damotte D et al (2012) Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors. J Clin Investig 122:899–910. doi:10.1172/JCI45817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yang Q, Goding S, Hagenaars M et al (2006) Morphological appearance, content of extracellular matrix and vascular density of lung metastases predicts permissiveness to infiltration by adoptively transferred natural killer and T cells. Cancer Immunol Immunother 55:699–707. doi:10.1007/s00262-005-0043-4

    Article  CAS  PubMed  Google Scholar 

  54. Peranzoni E, Rivas-Caicedo A, Bougherara H et al (2013) Positive and negative influence of the matrix architecture on antitumor immune surveillance. Cell Mol Life Sci 70:4431–4448. doi:10.1007/s00018-013-1339-8

    Article  CAS  PubMed  Google Scholar 

  55. Jiang H, Hegde S, Knolhoff BL et al (2016) Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat Med 22:851–860. doi:10.1038/nm.4123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Caruana I, Savoldo B, Hoyos V et al (2015) Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 21:524–529. doi:10.14440/jbm.2015.54.A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kato Y (2017) Upregulation of memory T cell population and enhancement of Th1 response by lenvatinib potentiate antitumor activity of PD-1 signaling blockade. In: Proceedings of the 110th annual meeting of the American Association for Cancer Research; 2017 Apr 4–5; AACR, Washington, DC, 2017. 58: Part B. Abstract 4614

  58. Adair-Kirk TL, Senior RM (2008) Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol 40:1101–1110. doi:10.1016/j.biocel.2007.12.005

    Article  CAS  PubMed  Google Scholar 

  59. Kristensen JH, Karsdal MA, Sand JM et al (2015) Serological assessment of neutrophil elastase activity on elastin during lung ECM remodeling. BMC Pulm Med 15:53. doi:10.1186/s12890-015-0048-5

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bager CL, Willumsen N, Leeming DJ et al (2015) Collagen degradation products measured in serum can separate ovarian and breast cancer patients from healthy controls: a preliminary study. Cancer Biomark 15:783–788. doi:10.3233/CBM-150520

    Article  CAS  PubMed  Google Scholar 

  61. Willumsen N, Bager CL, Leeming DJ et al (2014) Serum biomarkers reflecting specific tumor tissue remodeling processes are valuable diagnostic tools for lung cancer. Cancer Med 3:1136–1145. doi:10.1002/cam4.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Willumsen N, Bager CL, Leeming DJ et al (2013) Extracellular matrix specific protein fingerprints measured in serum can separate pancreatic cancer patients from healthy controls. BMC Cancer 13:554. doi:10.1186/1471-2407-13-554

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bager CL, Willumsen N, Kehlet SN et al (2016) Remodeling of the tumor microenvironment predicts increased risk of cancer in postmenopausal women: the prospective epidemiologic risk factor (PERF I) study. Cancer Epidemiol Biomark Prev 25:1348–1355. doi:10.1158/1055-9965.EPI-16-0127

    Article  CAS  Google Scholar 

  64. Mortensen JH, Godskesen LE, Jensen MD et al (2015) Fragments of citrullinated and MMP-degraded vimentin and MMP-degraded type III collagen are novel serological biomarkers to differentiate Crohn’s disease from ulcerative colitis. J Crohns Colitis 9:863–872. doi:10.1093/ecco-jcc/jjv123

    Article  PubMed  Google Scholar 

  65. Leeming D, He Y, Veidal S et al (2011) A novel marker for assessment of liver matrix remodeling: an enzyme-linked immunosorbent assay (ELISA) detecting a MMP generated type I collagen neo-epitope (C1M). Biomarkers 16:616–628. doi:10.3109/1354750X.2011.620628

    Article  CAS  PubMed  Google Scholar 

  66. Barascuk N, Veidal SS, Larsen L et al (2010) A novel assay for extracellular matrix remodeling associated with liver fibrosis: an enzyme-linked immunosorbent assay (ELISA) for a MMP-9 proteolytically revealed neo-epitope of type III collagen. Clin Biochem 43:899–904. doi:10.1016/j.clinbiochem.2010.03.012

    Article  CAS  PubMed  Google Scholar 

  67. Veidal SS, Karsdal MA, Nawrocki A et al (2011) Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis. Fibrogenesis Tissue Repair 4:22. doi:10.1186/1755-1536-4-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bay-Jensen AC, Leeming DJ, Kleyer A et al (2012) Ankylosing spondylitis is characterized by an increased turnover of several different metalloproteinase-derived collagen species: a cross-sectional study. Rheumatol Int 32:3565–3572

    Article  CAS  PubMed  Google Scholar 

  69. Bay-Jensen AC, Byrjalsen I, Siebuhr AS et al (2014) Serological biomarkers of joint tissue turnover predict tocilizumab response at baseline. J Clin Rheumatol 20:332–335. doi:10.1097/RHU.0000000000000150

    PubMed  PubMed Central  Google Scholar 

  70. Siebuhr A, Bay-Jensen AC, Leeming DJ et al (2013) Serological identification of fast progressors of structural damage with rheumatoid arthritis. Arthritis Res Ther 15:R86. doi:10.1186/ar4266

    Article  PubMed  PubMed Central  Google Scholar 

  71. Siebuhr AS, Petersen KK, Rendt-Nielsen L et al (2014) Identification and characterisation of osteoarthritis patients with inflammation derived tissue turnover. Osteoarthr Cartil 22:44–50. doi:10.1016/j.joca.2013.10.020

    Article  CAS  PubMed  Google Scholar 

  72. Leeming DJ, Sand JM, Nielsen MJ et al (2012) Serological investigation of the collagen degradation profile of patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis. Biomark Insights 7:119–126. doi:10.4137/BMI.S9415

    Article  PubMed  PubMed Central  Google Scholar 

  73. Leeming DJ, Bay-Jensen AC, Vassiliadis E et al (2011) Post-translational modifications of the extracellular matrix are key events in cancer progression: opportunities for biochemical marker development. Biomarkers 16:193–205. doi:10.3109/1354750X.2011.557440

    Article  CAS  PubMed  Google Scholar 

  74. Karsdal MA, Henriksen K, Leeming DJ et al (2010) Novel combinations of post-translational modification (PTM) neo-epitopes provide tissue-specific biochemical markers-are they the cause or the consequence of the disease? Clin Biochem 43:793–804. doi:10.1016/j.clinbiochem.2010.03.015

    Article  CAS  PubMed  Google Scholar 

  75. Prakash MD, Munoz MA, Jain R et al (2014) Granzyme B promotes cytotoxic lymphocyte transmigration via basement membrane remodeling. Immunity 41:960–972. doi:10.1016/j.immuni.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  76. Virchow R (1863) Aetiologie der neoplastischen Geschwülste/Pathogenie der neoplastischen Geschwülste. Die krankhaften Geschwülste: Erster band, 1st edn. Verlag von August Hirschwald, Berlin, pp 57–101

    Google Scholar 

  77. Schreiber RD, Old LJ, Smyth MJ (2011) Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science 331:1565–1570. doi:10.1126/science.1203486

    Article  CAS  PubMed  Google Scholar 

  78. Finn OJ (2012) Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann Oncol 23(suppl. 8):viii6–9. doi:10.1093/annonc/mds256

    PubMed  PubMed Central  Google Scholar 

  79. Grivennikov SI, Karin M (2010) Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 20:65–71. doi:10.1016/j.gde.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  80. Turley SJ, Cremasco V, Astarita JL (2015) Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15:669–682. doi:10.1038/nri3902

    Article  CAS  PubMed  Google Scholar 

  81. Sica A, Allavena P, Mantovani A (2008) Cancer related inflammation: the macrophage connection. Cancer Lett 267:204–215. doi:10.1016/j.canlet.2008.03.028

    Article  CAS  PubMed  Google Scholar 

  82. Ries CH, Cannarile MA, Hoves S et al (2014) Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell 25:846–859. doi:10.1016/j.ccr.2014.05.016

    Article  CAS  PubMed  Google Scholar 

  83. Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM (2003) Vimentin is secreted by activated macrophages. Nat Cell Biol 5:59–63. doi:10.1038/ncb898

    Article  CAS  PubMed  Google Scholar 

  84. Gudmann NS, Hansen NUB, Jensen ACB et al (2015) Biological relevance of citrullinations: diagnostic, prognostic and therapeutic options. Autoimmunity 48:73–79. doi:10.3109/08916934.2014.962024

    Article  CAS  PubMed  Google Scholar 

  85. Bay-Jensen AC, Guo X, Mortensen JH, Karsdal MA et al (2015) VICM is a novel biomarker of macrophage activity evaluated in a phase IIb clinical trial of mavrilimumab. Arthritis Rheumatol. 67: suppl 10; abstr 1679

  86. Vassiliadis E, Oliveira CP, Alvares-da-Silva MR et al (2012) Circulating levels of citrullinated and MMP-degraded vimentin (VICM) in liver fibrosis related pathology. Am J Transl Res 4:403–414

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bay-Jensen AC, Platt A, Byrjalsen I et al (2014) Effect of tocilizumab combined with methotrexate on circulating biomarkers of synovium, cartilage, and bone in the LITHE study. Semin Arthritis Rheum 43:470–478. doi:10.1016/j.semarthrit.2013.07.008

    Article  CAS  PubMed  Google Scholar 

  88. Bay-Jensen AC, Karsdal MA, Vassiliadis E et al (2013) Circulating citrullinated vimentin fragments reflect disease burden in ankylosing spondylitis and have prognostic capacity for radiographic progression. Arthritis Rheum 65:972–980. doi:10.1002/art.37843

    Article  CAS  PubMed  Google Scholar 

  89. Pelosi G, Melotti F, Cavazza A et al (2012) A modified vimentin histological score helps recognize pulmonary sarcomatoid carcinoma in small biopsy samples. Anticancer Res 32:1463–1473

    PubMed  Google Scholar 

  90. O’Callaghan DS, O’Donnell D, O’Connell F, O’Byrne KJ (2010) The role of inflammation in the pathogenesis of non-small cell lung cancer. J Thorac Oncol 5:2024–2036

    Article  PubMed  Google Scholar 

  91. Willumsen N, Bager C, Bay-Jensen A et al (2017) Unique insight into microenvironmental changes in colorectal cancer: ex vivo assessment of matrix metalloprotease-mediated molecular changes in human colorectal tumor tissue and corresponding non-neoplastic adjacent tissue. Oncol Lett 13:3774–3780. doi:10.3892/ol.2017.5900

    PubMed  PubMed Central  Google Scholar 

  92. Nicolazzo C, Raimondi C, Mancini M et al (2016) Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor nivolumab. Sci Rep 6:31726. doi:10.1038/srep31726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gros A, Parkhurst MR, Tran E et al (2016) Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat Med 22:433–438. doi:10.1038/nm.4051

    Article  CAS  PubMed  Google Scholar 

  94. Zhou J, Mahoney KM, Giobbie-Hurder A et al (2017) Soluble PD-L1 as a biomarker in malignant melanoma and checkpoint blockade. Cancer Immunol Res 5:480–492. doi:10.1158/2326-6066.CIR-16-0329

    Article  CAS  PubMed  Google Scholar 

  95. Gray ES, Rizos H, Reid AL et al (2015) Circulating tumor DNA to monitor treatment response and detect acquired resistance in patients with metastatic melanoma. Oncotarget 6:42008–42018. doi:10.18632/oncotarget.5788

    Article  PubMed  PubMed Central  Google Scholar 

  96. Kijima T, Hazama S, Tsunedomi R et al (2017) MicroRNA-6826 and-6875 in plasma are valuable non-invasive biomarkers that predict the efficacy of vaccine treatment against metastatic colorectal cancer. Oncol Rep 37:23–30. doi:10.3892/or.2016.5267

    Article  PubMed  Google Scholar 

  97. Stucci S, Tucci M, Ascierto P et al (2015) Dendritic cell-derived exosomes (Dex) are potential biomarkers of response to ipilimumab in metastatic melanoma. J Transl Med 13(suppl 1):P15. doi:10.1186/1479-5876-13-S1-P15

    Article  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conception of the work: NW and MK. Drafting the article: NW, LBT, and CJ. Preparing figures: CLB, NW, and LBT. Critical revision of the article: MK. Final approval: NW, LBT, CLB, CJ, and MAK.

Corresponding author

Correspondence to Nicholas Willumsen.

Ethics declarations

Conflict of interest

All authors are employed at Nordic Bioscience involved in discovery and development of serological biomarkers.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willumsen, N., Thomsen, L.B., Bager, C.L. et al. Quantification of altered tissue turnover in a liquid biopsy: a proposed precision medicine tool to assess chronic inflammation and desmoplasia associated with a pro-cancerous niche and response to immuno-therapeutic anti-tumor modalities. Cancer Immunol Immunother 67, 1–12 (2018). https://doi.org/10.1007/s00262-017-2074-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-017-2074-z

Keywords

Navigation