Skip to main content

Advertisement

Log in

The other side of MMPs: Protective roles in tumor progression

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The matrix metalloproteinase (MMP) family of extracellular proteinases have long been associated with cancer invasion and metastasis by virtue of their ability to collectively degrade all components of the extracellular matrix (ECM). The general belief that overexpression of a specific MMP, either by tumor cells or the surrounding stroma, is pro-tumorigenic led to the development of synthetic MMP inhibitors for the treatment of cancer. However, there is an increasing amount of literature demonstrating that the expression of certain MMPs, either at the primary or the metastatic site, provides a beneficial and protective effect in multiple stages of cancer progression. Here, we review the evidence for protective effects of MMPs and contrast this with pro-tumorigenic effects of either the same enzyme, or a different MMP of the same family. These studies highlight the importance of targeting specific MMPs for cancer treatment, and point to a potential reason why clinical trials of pharmaceutical inhibitors for MMPs were disappointing. In order to effectively target MMPs in cancer progression, a better understanding of both their pro- and anti-tumorigenic effects is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fingleton, B. (2006). Matrix metalloproteinases: Roles in cancer and metastasis. Frontiers in Bioscience, 11, 479–91.

    Article  PubMed  CAS  Google Scholar 

  2. Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2, 161–74.

    Article  PubMed  CAS  Google Scholar 

  3. Gross, J., & Lapiere, C. M. (1962). Collagenolytic activity in amphibian tissues: A tissue culture assay. Proceedings of the National Academy of Sciences of the United States of America, 48, 1014–022.

    Article  PubMed  CAS  Google Scholar 

  4. Benaud, C., Dickson, R. B., & Thompson, E. W. (1998). Roles of the matrix metalloproteinases in mammary gland development and cancer. Breast Cancer Research and Treatment, 50, 97–16.

    Article  PubMed  CAS  Google Scholar 

  5. Liotta, L. A., Tryggvason, K., Garbisa, S., Hart, I., Foltz, C. M., & Shafie, S. (1980). Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature, 284, 67–8.

    Article  PubMed  CAS  Google Scholar 

  6. Brinckerhoff, C. E., & Matrisian, L. M. (2002). Matrix metalloproteinases: A tail of a frog that became a prince. Nature Reviews. Molecular Cell Biology, 3, 207–14.

    Article  PubMed  CAS  Google Scholar 

  7. McCawley, L. J., & Matrisian, L. M. (2001). Matrix metalloproteinases: They’re not just for matrix anymore! Current Opinion in Cell Biology, 13, 534–40.

    Article  PubMed  CAS  Google Scholar 

  8. Martin, M. D., & Matrisian, L. M. (2005). Matrix metalloproteinases as prognostic factors for cancer. Clinical Laboratory Investigations, 28, 16–8.

    Google Scholar 

  9. Basset, P., Bellocq, J. P., Wolf, C., Stoll, I., Hutin, P., Limacher, J. M., et al. (1990). A novel metalloproteinase gene specifically expressed in stromal cells of breast carcinomas. Nature, 348, 699–04.

    Article  PubMed  CAS  Google Scholar 

  10. Heppner, K. J., Matrisian, L. M., Jensen, R. A., & Rodgers, W. H. (1996). Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. American Journal of Pathology, 149, 273–82.

    PubMed  CAS  Google Scholar 

  11. Lynch, C. C., & Matrisian, L. M. (2002). Matrix metalloproteinases in tumor-host cell communication. Differentiation, 70, 561–73.

    Article  PubMed  CAS  Google Scholar 

  12. Deryugina, E. I., & Quigley, J. P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer and Metastasis Reviews, 25, 9–4.

    Article  PubMed  CAS  Google Scholar 

  13. Koop, S., Khokha, R., Schmidt, E. E., MacDonald, I. C., Morris, V. L., Chambers, A. F., et al. (1994). Overexpression of metalloproteinase inhibitor in B16F10 cells does not affect extravasation but reduces tumor growth. Cancer Research, 54, 4791–797.

    PubMed  CAS  Google Scholar 

  14. Whitelock, J. M., Murdoch, A. D., Iozzo, R. V., & Underwood, P. A. (1996). The degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. Journal of Biological Chemistry, 271, 10079–0086.

    Article  PubMed  CAS  Google Scholar 

  15. Imai, K., Hiramatsu, A., Fukushima, D., Pierschbacher, M. D., & Okada, Y. (1997). Degradation of decorin by matrix metalloproteinases: Identification of the cleavage sites, kinetic analyses and transforming growth factor-beta 1 release. Biochemical Journal, 322, 809–14.

    PubMed  CAS  Google Scholar 

  16. Manes, S., Mira, E., Barbacid, M. M., Cipres, A., Fernandez-Resa, P., Buesa, J. M., et al. (1997). Identification of insulin-like growth factor-binding protein-1 as a potential physiological substrate for human stromelysin-3. Journal of Biological Chemistry, 272, 25706–5712.

    Article  PubMed  CAS  Google Scholar 

  17. Manes, S., Llorente, M., Lacalle, R. A., Gomez-Mouton, C., Kremer, L., Mira, E., et al. (1999). The matrix metalloproteinase-9 regulates the insulin-like growth factor-triggered autocrine response in DU-145 carcinoma cells. Journal of Biological Chemistry, 274, 6935–945.

    Article  PubMed  CAS  Google Scholar 

  18. Agrez, M., Chen, A., Cone, R. J., Pytela, R., & Sheppard, D. (1994). The alpha v beta 6 integrin promotes proliferation of colon carcinoma cells through a unique region of the beta 6 cytoplasmic domain. Journal of Cell Biology, 127, 547–56.

    Article  PubMed  CAS  Google Scholar 

  19. Powell, W. C., Fingleton, B., Wilson, C. L., Boothby, M., & Matrisian, L. M. (1999). The metalloproteinase matrilysin (MMP-7) proteolytically generates active soluble Fas ligand and potentiates epithelial cell apoptosis. Current Biology, 9, 1441–447.

    Article  PubMed  CAS  Google Scholar 

  20. Fingleton, B., Vargo-Gogola, T., Crawford, H. C., & Matrisian, L. M. (2001). Matrilysin [MMP-7] expression selects for cells with reduced sensitivity to apoptosis. Neoplasia, 3, 459–68.

    Article  PubMed  CAS  Google Scholar 

  21. Vargo-Gogola, T., Crawford, H. C., Fingleton, B., & Matrisian, L. M. (2002). Identification of novel matrix metalloproteinase-7 (matrilysin) cleavage sites in murine and human Fas ligand. Archives of Biochemistry and Biophysics, 408, 155–61.

    Article  PubMed  CAS  Google Scholar 

  22. Balbin, M., Fueyo, A., Tester, A. M., Pendas, A. M., Pitiot, A. S., Astudillo, A., et al. (2003). Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature Genetics, 35, 252–57.

    Article  PubMed  CAS  Google Scholar 

  23. D’Armiento, J., DiColandrea, T., Dalal, S. S., Okada, Y., Huang, M. T., Conney, A. H., et al. (1995). Collagenase expression in transgenic mouse skin causes hyperkeratosis and acanthosis and increases susceptibility to tumorigenesis. Molecular and Cellular Biology, 15, 5732–739.

    PubMed  Google Scholar 

  24. McCawley, L. J., Crawford, H. C., King, L. E., Jr., Mudgett, J., & Matrisian, L. M. (2004). A protective role for matrix metalloproteinase-3 in squamous cell carcinoma. Cancer Research, 64, 6965–972.

    Article  PubMed  CAS  Google Scholar 

  25. Witty, J. P., Lempka, T., Coffey, R. J., Jr., & Matrisian, L. M. (1995). Decreased tumor formation in 7,12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis. Cancer Research, 55, 1401–406.

    PubMed  CAS  Google Scholar 

  26. Sternlicht, M. D., Lochter, A., Sympson, C. J., Huey, B., Rougier, J. P., Gray, J. W., et al. (1999). The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell, 98, 137–46.

    Article  PubMed  CAS  Google Scholar 

  27. Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., et al. (2005). Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature, 436, 123–27.

    Article  PubMed  CAS  Google Scholar 

  28. Kerkela, E., Ala-aho, R., Klemi, P., Grenman, S., Shapiro, S. D., Kahari, V. M., et al. (2002). Metalloelastase (MMP-12) expression by tumour cells in squamous cell carcinoma of the vulva correlates with invasiveness, while that by macrophages predicts better outcome. Journal of Pathology, 198, 258–69.

    Article  PubMed  CAS  Google Scholar 

  29. Schultz, R. M., Silberman, S., Persky, B., Bajkowski, A. S., & Carmichael, D. F. (1988). Inhibition by human recombinant tissue inhibitor of metalloproteinases of human amnion invasion and lung colonization by murine B16-F10 melanoma cells. Cancer Research, 48, 5539–545.

    PubMed  CAS  Google Scholar 

  30. Khokha, R. (1994). Suppression of the tumorigenic and metastatic abilities of murine B16-F10 melanoma cells in vivo by the overexpression of the tissue inhibitor of the metalloproteinases-1. Journal of the National Cancer Institute, 86, 299–04.

    Article  PubMed  CAS  Google Scholar 

  31. Watanabe, M., Takahashi, Y., Ohta, T., Mai, M., Sasaki, T., Seiki, M., et al. (1996). Inhibition of metastasis in human gastric cancer cells transfected with tissue inhibitor of metalloproteinase 1 gene in nude mice. Cancer, 77, 1676–680.

    PubMed  CAS  Google Scholar 

  32. Itoh, T., Tanioka, M., Yoshida, H., Yoshioka, T., Nishimoto, H., & Itohara, S. (1998). Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Research, 58, 1048–051.

    PubMed  CAS  Google Scholar 

  33. Itoh, T., Tanioka, M., Matsuda, H., Nishimoto, H., Yoshioka, T., Suzuki, R., et al. (1999). Experimental metastasis is suppressed in MMP-9-deficient mice. Clinical & Experimental Metastasis, 17, 177–81.

    Article  CAS  Google Scholar 

  34. Agarwal, D., Goodison, S., Nicholson, B., Tarin, D., & Urquidi, V. (2003). Expression of matrix metalloproteinase 8 (MMP-8) and tyrosinase-related protein-1 (TYRP-1) correlates with the absence of metastasis in an isogenic human breast cancer model. Differentiation, 71, 114–25.

    Article  PubMed  CAS  Google Scholar 

  35. Montel, V., Kleeman, J., Agarwal, D., Spinella, D., Kawai, K., & Tarin, D. (2004). Altered metastatic behavior of human breast cancer cells after experimental manipulation of matrix metalloproteinase 8 gene expression. Cancer Research, 64, 1687–694.

    Article  PubMed  CAS  Google Scholar 

  36. Hotary, K. B., Allen, E. D., Brooks, P. C., Datta, N. S., Long, M. W., & Weiss, S. J. (2003). Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell, 114, 33–5.

    Article  PubMed  CAS  Google Scholar 

  37. Sabeh, F., Ota, I., Holmbeck, K., Birkedal-Hansen, H., Soloway, P., Balbin, M., et al. (2004). Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP 2. Journal of Cell Biology, 167, 769–81.

    Article  PubMed  CAS  Google Scholar 

  38. Zhai, Y., Hotary, K. B., Nan, B., Bosch, F. X., Munoz, N., Weiss, S. J., et al. (2005). Expression of membrane type 1 matrix metalloproteinase is associated with cervical carcinoma progression and invasion. Cancer Research, 65, 6543–550.

    Article  PubMed  CAS  Google Scholar 

  39. Tsunezuka, Y., Kinoh, H., Takino, T., Wantanabe, Y., Okada, Y., Shainagawa, A., et al. (1996). Expression of membrane-type matrix metalloproteinase 1 (MT1-MMP) in tumor cells enhances pulmonary metastasis in an experimental metastasis assay. Cancer Research, 56, 5678–683.

    PubMed  CAS  Google Scholar 

  40. Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–90.

    Article  PubMed  CAS  Google Scholar 

  41. Acuff, H. B., Carter, K. J., Fingleton, B., Gorden, D. L., & Matrisian, L. M. (2006). Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment 1. Cancer Research, 66, 259–66.

    Article  PubMed  CAS  Google Scholar 

  42. Chantrain, C. F., Shimada, H., Jodele, S., Groshen, S., Ye, W., Shalinsky, D. R., et al. (2004). Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Research, 64, 1675–686.

    Article  PubMed  CAS  Google Scholar 

  43. Jodele, S., Blavier, L., Yoon, J. M., & DeClerck, Y. A. (2006). Modifying the soil to affect the seed: Role of stromal-derived matrix metalloproteinases in cancer progression. Cancer and Metastasis Reviews, 25, 35–3.

    Article  PubMed  CAS  Google Scholar 

  44. Folkman, J. (2004). Endogenous angiogenesis inhibitors. Apmis, 112, 496–07.

    Article  PubMed  CAS  Google Scholar 

  45. Hamano, Y., Zeisberg, M., Sugimoto, H., Lively, J. C., Maeshima, Y., Yang, C., et al. (2003). Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via alphaVbeta3 integrin. Cancer Cell, 3, 589–01.

    Article  PubMed  CAS  Google Scholar 

  46. Pozzi, A., Moberg, P. E., Miles, L. A., Wagner, S., Soloway, P., & Gardner, H. A. (2000). Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. Proceedings of the National Academy of Sciences of the United States of America, 97, 2202–207.

    Article  PubMed  CAS  Google Scholar 

  47. Chen, X., Su, Y., Fingleton, B., Acuff, H., Matrisian, L. M., Zent, R., et al. (2005). Increased plasma MMP9 in integrin alpha1-null mice enhances lung metastasis of colon carcinoma cells. International Journal of Cancer, 116, 52–1.

    Article  CAS  Google Scholar 

  48. Chen, X., Su, Y., Fingleton, B., Acuff, H., Matrisian, L. M., Zent, R., et al. (2005). An orthotopic model of lung cancer to analyze primary and metastatic NSCLC growth in integrin alpha1-null mice. Clinical & Experimental Metastasis, 22, 185–93.

    Article  CAS  Google Scholar 

  49. Bergers, G., Brekken, R., McMahon, G., Vu, T. H., Itoh, T., Tamaki, K., et al. (2000). Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biology, 2, 737–44.

    Article  PubMed  CAS  Google Scholar 

  50. Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., et al. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, 2, 289–00.

    Article  PubMed  CAS  Google Scholar 

  51. Nabha, S. M., Bonfil, R. D., Yamamoto, H. A., Belizi, A., Wiesner, C., Dong, Z., et al. (2006). Host matrix metalloproteinase-9 contributes to tumor vascularization without affecting tumor growth in a model of prostate cancer bone metastasis. Clinical & Experimental Metastasis, 23, 335–44.

    Article  CAS  Google Scholar 

  52. Dong, Z., Kumar, R., Yang, X., & Fidler, I. J. (1997). Macrophage-derived metalloelastase is responsible for the generation of angiostatin in Lewis lung carcinoma. Cell, 88, 801–10.

    Article  PubMed  CAS  Google Scholar 

  53. Houghton, A. M., Grisolano, J. L., Baumann, M. L., Kobayashi, D. K., Hautamaki, R. D., Nehring, L. C., et al. (2006). Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Research, 66, 6149–155.

    Article  PubMed  CAS  Google Scholar 

  54. Acuff, H. B., Sinnamon, M., Fingleton, B., Boone, B., Levy, S. E., Chen, X., et al. (2006). Analysis of host- and tumor-derived proteinases using a custom dual species microarray reveals a protective role for stromal matrix metalloproteinase-12 in non-small cell lung cancer. Cancer Research, 66, 7968–975.

    Article  PubMed  CAS  Google Scholar 

  55. Hofmann, H. S., Hansen, G., Richter, G., Taege, C., Simm, A., Silber, R. E., et al. (2005). Matrix metalloproteinase-12 expression correlates with local recurrence and metastatic disease in non-small cell lung cancer patients. Clinical Cancer Research, 11, 1086–092.

    PubMed  CAS  Google Scholar 

  56. Shipley, J. M., Wesselschmidt, R. L., Kobayashi, D. K., Ley, T. J., & Shapiro, S. D. (1996). Metalloelastase is required for macrophage-mediated proteolysis and matrix invasion in mice. Proceedings of the National Academy of Sciences of the United States of America, 93, 3942–946.

    Article  PubMed  CAS  Google Scholar 

  57. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–67.

    Article  PubMed  CAS  Google Scholar 

  58. Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 295, 2387–392.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn M. Matrisian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, M.D., Matrisian, L.M. The other side of MMPs: Protective roles in tumor progression. Cancer Metastasis Rev 26, 717–724 (2007). https://doi.org/10.1007/s10555-007-9089-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9089-4

Keywords

Navigation