Skip to main content

Downstream mediators of the intratumoral interferon response suppress antitumor immunity, induce gemcitabine resistance and associate with poor survival in human pancreatic cancer


The cancer microenvironment allows tumor cells to evade immune surveillance through a variety of mechanisms. While interferon-γ (IFNγ) is central to effective antitumor immunity, its effects on the microenvironment are not as clear and have in some cancers been shown to induce immune checkpoint ligands. The heterogeneity of these responses to IFNγ remains poorly characterized in desmoplastic malignancies with minimal inflammatory cell infiltration, such as pancreatic cancer (PC). Thus, the IFNγ response within and on key cells of the PC microenvironment was evaluated. IFNγ induced expression of human leukocyte antigen (HLA) class I and II on PC cell lines, primary pancreatic cancer epithelial cells (PPCE) and patient-derived tumor-associated stroma, concomitant with an upregulation of PDL1 in the absence of CD80 and CD86 expression. As expected, IFNγ also induced high levels of CXCL10 from all cell types. In addition, significantly higher levels of CXCL10 were observed in PC specimens compared to those from chronic pancreatitis, whereby intratumoral CXCL10 concentration was an independent predictor of poor survival. Immunohistochemical analysis revealed a subset of CXCR3-positive cancer cells in over 90 % of PC specimens, as well as on a subset of cultured PC cell lines and PPCE, whereby exposure to CXCL10 induced resistance to the chemotherapeutic gemcitabine. These findings suggest that IFNγ has multiple effects on many cell types within the PC microenvironment that may lead to immune evasion, chemoresistance and shortened survival.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4



Alexa Fluor®




Chronic pancreatitis


CXC chemokine ligand 10


CXC chemokine receptor 3




Dulbecco’s modified Eagle’s medium


Ethylenediaminetetraacetic acid


Enzyme-linked immunosorbent assay


Fetal bovine serum


Human leukocyte antigen



LD50 :

Median lethal dose


Natural killer


Overall survival


Pancreatic cancer


Programmed death ligand 1




Primary pancreatic cancer epithelial cells


Positive resection margin


Standard error of the mean


Short tandem repeat


Tumor-associated stroma


University of Florida


  1. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74:2913–2921. doi:10.1158/0008-5472.CAN-14-0155

    CAS  Article  PubMed  Google Scholar 

  2. Von Hoff DD, Ervin T, Arena FP et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703. doi:10.1056/NEJMoa1304369

    Article  Google Scholar 

  3. Thomas AM, Santarsiero LM, Lutz ER et al (2004) Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J Exp Med 200:297–306. doi:10.1084/jem.20031435

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. Winograd R, Byrne KT, Evans RA et al (2015) Induction of T-cell immunity overcomes complete resistance to PD-1 and CTLA-4 blockade and improves survival in pancreatic carcinoma. Cancer Immunol Res 3:399–411. doi:10.1158/2326-6066.CIR-14-0215

    CAS  Article  PubMed  Google Scholar 

  5. Le DT, Lutz E, Uram JN et al (2013) Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother 36:382–389. doi:10.1097/CJI.0b013e31829fb7a2

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  6. Royal RE, Levy C, Turner K et al (2010) Phase 2 trial of single agent Ipilimumab (anti-CTLA-4) for locally advanced or metastatic pancreatic adenocarcinoma. J Immunother 33:828–833. doi:10.1097/CJI.0b013e3181eec14c

    CAS  Article  PubMed  Google Scholar 

  7. Kraman M, Bambrough PJ, Arnold JN, Roberts EW, Magiera L, Jones JO, Gopinathan A, Tuveson DA, Fearon DT (2010) Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science 330:827–830. doi:10.1126/science.1195300

    CAS  Article  PubMed  Google Scholar 

  8. Laheru D, Jaffee EM (2005) Immunotherapy for pancreatic cancer—science driving clinical progress. Nat Rev Cancer 5:459–467. doi:10.1038/nrc1630

    CAS  Article  PubMed  Google Scholar 

  9. Erkan M, Hausmann S, Michalski CW, Fingerle AA, Dobritz M, Kleeff J, Friess H (2012) The role of stroma in pancreatic cancer: diagnostic and therapeutic implications. Nat Rev Gastroenterol Hepatol 9:454–467. doi:10.1038/nrgastro.2012.115

    CAS  Article  PubMed  Google Scholar 

  10. Beatty GL, Winograd R, Evans RA et al (2015) Exclusion of T cells from pancreatic carcinomas in mice is regulated by Ly6C(low) F4/80(+) extratumoral macrophages. Gastroenterology 149:201–210. doi:10.1053/j.gastro.2015.04.010

    CAS  Article  PubMed  Google Scholar 

  11. Bayne LJ, Beatty GL, Jhala N, Clark CE, Rhim AD, Stanger BZ, Vonderheide RH (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 21:822–835. doi:10.1016/j.ccr.2012.04.025

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  12. Clark CE, Hingorani SR, Mick R, Combs C, Tuveson DA, Vonderheide RH (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res 67:9518–9527. doi:10.1158/0008-5472.CAN-07-0175

    CAS  Article  PubMed  Google Scholar 

  13. Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9:628–638. doi:10.1038/nrm2455

    CAS  Article  PubMed  Google Scholar 

  14. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ, Schreiber RD (1998) Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 95:7556–7561

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  15. Dong H, Strome SE, Salomao DR et al (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800. doi:10.1038/nm730

    CAS  Article  PubMed  Google Scholar 

  16. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795. doi:10.1146/annurev.immunol.15.1.749

    CAS  Article  PubMed  Google Scholar 

  17. Bruns CJ, Harbison MT, Kuniyasu H, Eue I, Fidler IJ (1999) In vivo selection and characterization of metastatic variants from human pancreatic adenocarcinoma by using orthotopic implantation in nude mice. Neoplasia 1:50–62

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  18. Trevino JG, Summy JM, Gray MJ, Nilsson MB, Lesslie DP, Baker CH, Gallick GE (2005) Expression and activity of SRC regulate interleukin-8 expression in pancreatic adenocarcinoma cells: implications for angiogenesis. Cancer Res 65:7214–7222. doi:10.1158/0008-5472.CAN-04-3858

    CAS  Article  PubMed  Google Scholar 

  19. Trevino JG, Verma M, Singh S et al (2013) Selective disruption of rb-raf-1 kinase interaction inhibits pancreatic adenocarcinoma growth irrespective of gemcitabine sensitivity. Mol Cancer Ther 12:2722–2734. doi:10.1158/1535-7163.MCT-12-0719

    CAS  Article  PubMed  Google Scholar 

  20. Delitto D, Pham K, Vlada AC et al (2015) Patient-derived xenograft models for pancreatic adenocarcinoma demonstrate retention of tumor morphology through incorporation of murine stromal elements. Am J Pathol 185:1297–1303. doi:10.1016/j.ajpath.2015.01.016

    CAS  Article  PubMed  Google Scholar 

  21. Bachem MG, Schneider E, Gross H et al (1998) Identification, culture, and characterization of pancreatic stellate cells in rats and humans. Gastroenterology 115:421–432

    CAS  Article  PubMed  Google Scholar 

  22. Meng H, Lee Y, Ba Z, Fleming JA, Furumoto EJ, Roberts RF, Kris-Etherton PM, Rogers CJ (2015) In vitro production of IL-6 and IFN-gamma is influenced by dietary variables and predicts upper respiratory tract infection incidence and severity respectively in young adults. Front Immunol 6:94. doi:10.3389/fimmu.2015.00094

    PubMed Central  Article  PubMed  Google Scholar 

  23. Li X, Rendon JL, Akhtar S, Choudhry MA (2012) Activation of toll-like receptor 2 prevents suppression of T-cell interferon gamma production by modulating p38/extracellular signal-regulated kinase pathways following alcohol and burn injury. Mol Med 18:982–991. doi:10.2119/molmed.2011.00513

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Verhoef CM, Van Roon JA, Vianen ME, Glaudemans CA, Lafeber FP, Bijlsma JW (1999) Lymphocyte stimulation by CD3-CD28 enables detection of low T cell interferon-gamma and interleukin-4 production in rheumatoid arthritis. Scand J Immunol 50:427–432

    CAS  Article  PubMed  Google Scholar 

  25. Arumugam T, Ramachandran V, Fournier KF et al (2009) Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res 69:5820–5828. doi:10.1158/0008-5472.CAN-08-2819

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  26. Trevino JG, Pillai S, Kunigal S, Singh S, Fulp WJ, Centeno BA, Chellappan SP (2012) Nicotine induces inhibitor of differentiation-1 in a Src-dependent pathway promoting metastasis and chemoresistance in pancreatic adenocarcinoma. Neoplasia 14:1102–1114

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  27. Romagnani P, Annunziato F, Lasagni L et al (2001) Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. J Clin Invest 107:53–63. doi:10.1172/JCI9775

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  28. de Sousa Cavalcante L, Monteiro G (2014) Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur J Pharmacol 741:8–16. doi:10.1016/j.ejphar.2014.07.041

    Article  Google Scholar 

  29. Kleeff J, Beckhove P, Esposito I, Herzig S, Huber PE, Lohr JM, Friess H (2007) Pancreatic cancer microenvironment. Int J Cancer 121:699–705. doi:10.1002/ijc.22871

    CAS  Article  PubMed  Google Scholar 

  30. Apte MV, Xu Z, Pothula S, Goldstein D, Pirola RC, Wilson JS (2015) Pancreatic cancer: the microenvironment needs attention too! Pancreatology 15:S32–S38. doi:10.1016/j.pan.2015.02.013

    CAS  Article  PubMed  Google Scholar 

  31. Neesse A, Algul H, Tuveson DA, Gress TM (2015) Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 64:1476–1484. doi:10.1136/gutjnl-2015-309304

    Article  PubMed  Google Scholar 

  32. Lange F, Rateitschak K, Fitzner B, Pohland R, Wolkenhauer O, Jaster R (2011) Studies on mechanisms of interferon-gamma action in pancreatic cancer using a data-driven and model-based approach. Mol Cancer 10:13. doi:10.1186/1476-4598-10-13

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  33. Willimsky G, Blankenstein T (2005) Sporadic immunogenic tumours avoid destruction by inducing T-cell tolerance. Nature 437:141–146. doi:10.1038/nature03954

    CAS  Article  PubMed  Google Scholar 

  34. Bos R, Sherman LA (2010) CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes. Cancer Res 70:8368–8377. doi:10.1158/0008-5472.CAN-10-1322

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  35. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, Gajewski TF (2004) PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res 64:1140–1145

    CAS  Article  PubMed  Google Scholar 

  36. Feig C, Jones JO, Kraman M et al (2013) Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci USA 110:20212–20217. doi:10.1073/pnas.1320318110

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  37. Hartmann N, Giese NA, Giese T, Poschke I, Offringa R, Werner J, Ryschich E (2014) Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer. Clin Cancer Res 20:3422–3433. doi:10.1158/1078-0432.CCR-13-2972

    CAS  Article  PubMed  Google Scholar 

  38. Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S, Ramakrishna S (2013) Immune system: a double-edged sword in cancer. Inflamm Res 62:823–834. doi:10.1007/s00011-013-0645-9

    CAS  Article  PubMed  Google Scholar 

  39. Lunardi S, Jamieson NB, Lim SY et al (2014) IP-10/CXCL10 induction in human pancreatic cancer stroma influences lymphocytes recruitment and correlates with poor survival. Oncotarget 5:11064–11080

    PubMed Central  Article  PubMed  Google Scholar 

  40. Chaturvedi P, Gilkes DM, Wong CC et al (2013) Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest 123:189–205. doi:10.1172/JCI64993

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Zipin-Roitman A, Meshel T, Sagi-Assif O, Shalmon B, Avivi C, Pfeffer RM, Witz IP, Ben-Baruch A (2007) CXCL10 promotes invasion-related properties in human colorectal carcinoma cells. Cancer Res 67:3396–3405. doi:10.1158/0008-5472.CAN-06-3087

    CAS  Article  PubMed  Google Scholar 

  42. Walser TC, Rifat S, Ma X et al (2006) Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Cancer Res 66:7701–7707. doi:10.1158/0008-5472.CAN-06-0709

    CAS  Article  PubMed  Google Scholar 

  43. Kawada K, Sonoshita M, Sakashita H et al (2004) Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Res 64:4010–4017. doi:10.1158/0008-5472.CAN-03-1757

    CAS  Article  PubMed  Google Scholar 

  44. Schober M, Jesenofsky R, Faissner R, Weidenauer C, Hagmann W, Michl P, Heuchel RL, Haas SL, Lohr JM (2014) Desmoplasia and chemoresistance in pancreatic cancer. Cancers (Basel) 6:2137–2154. doi:10.3390/cancers6042137

    CAS  Article  Google Scholar 

  45. Shah AN, Summy JM, Zhang J, Park SI, Parikh NU, Gallick GE (2007) Development and characterization of gemcitabine-resistant pancreatic tumor cells. Ann Surg Oncol 14:3629–3637. doi:10.1245/s10434-007-9583-5

    Article  PubMed  Google Scholar 

Download references


We would like to thank the National Cancer Institute (NCI 5T32 CA106493-09), the National Institute of Diabetes and Digestive and Kidney Disease (NIDDK F31 DK104492-01A), the National Institute of Dental and Craniofacial Research (NIDCR T90 DE021990-02), the Cracchiolo Foundation and the Frederick A. Coller Surgical Society for their support in these investigations.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Shannon M. Wallet or Steven J. Hughes.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1810 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Delitto, D., Perez, C., Han, S. et al. Downstream mediators of the intratumoral interferon response suppress antitumor immunity, induce gemcitabine resistance and associate with poor survival in human pancreatic cancer. Cancer Immunol Immunother 64, 1553–1563 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Interferon-γ
  • CXCL10
  • Pancreatic cancer
  • Epithelial cell
  • Tumor-associated stroma
  • Immuno-oncology