Skip to main content

Advertisement

Log in

Ontak reduces the immunosuppressive tumor environment and enhances successful therapeutic vaccination in HER-2/neu-tolerant mice

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Disrupting tumor-mediated mechanisms suppressing host immunity represents a novel approach to tumor immunotherapy. Depletion of regulatory T cells (Tregs) increases endogenous anti-tumor immunity and the efficacy of active immunotherapy in experimental tumor models. HLA-A2.1/HLA-DR1 (A2.1/DR1) × BALB- neuT + (neuT +) triple transgenic mice represent an improvement over neuT + mice for evaluating vaccination regimens to overcome tolerance against HER-2/neu. We questioned whether depletion of Tregs with Denileukin diftitox (Ontak) enhances the efficacy of a therapeutic vaccine consisting of HER-2(85–94) (p85) CTL and HER-2(776–790) (p776) Th peptides against the growth of TUBO.A2 transplantable tumor in male A2.1/DR1 × neuT + Tg mice. While the therapeutic vaccine primed the tumor-reactive CD8+ CTLs and CD4+ effector T lymphocytes (Teffs) compartment, inducing activation, tumor infiltration, and tumor rejection or delay in tumor growth, treatment with Ontak 1 day prior to vaccination resulted in enhanced CD4+ and CD8+ T-cell-mediated vaccine-specific immune responses in the periphery. This was closely associated with greater infiltration and a striking change in the intratumor balance of Tregs and vaccine-specific CTLs/Teffs that directly correlated with markedly enhanced antitumor activity. The data suggest that Tregs control both CD4+ and CD8+ T-cell activity within the tumor, emphasize the importance of the intratumor ratio of vaccine-specific lymphocytes to Tregs, and demonstrate significant inversion of this ratio and correlation with tumor rejection during Ontak/vaccine immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Tregs:

Regulatory T cells

Tg:

Transgenic

Teffs:

Effector T cell

FasL:

Fas ligand

PENT:

Pentamer

Tm:

Tetramer

TIL:

Tumor infiltrating lymphocytes

References

  1. Levings MK, Sangregorio R, Roncarolo MG (2001) Human CD25(+)CD4(+) t regulatory cells suppress naïve and memory T cell proliferation and can be expanded in vitro without loss of function. J Exp Med 193:1295–1302

    Article  PubMed  CAS  Google Scholar 

  2. Shevach EM (2001) Certified professionals: CD4(+)CD25(+) Suppressor T cells. J Exp Med 193:41–46

    Article  Google Scholar 

  3. Jonuleit H, Schmitt E, Schuler G, Knop J, Enk AH (2000) Induction of interleukin10-producing, non proliferating CD4(+) Tcells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 192:1213–1222

    Article  PubMed  CAS  Google Scholar 

  4. Read S, Powrie F (2001) CD4(+) regulatory T cells. Curr Opin Immunol 13:644–649

    Article  PubMed  CAS  Google Scholar 

  5. Terabe M, Berzofsky JA (2004) Immunoregulatory T cells in tumor immunity. Curr Opin Immunol 16:157–162

    Article  PubMed  CAS  Google Scholar 

  6. Ahmad M, Rees RC, Ali SA (2004) Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 53:844–854

    Article  PubMed  Google Scholar 

  7. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L et al (2004) Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 10:942–949

    Article  PubMed  CAS  Google Scholar 

  8. Wolf AM, Wolf D, Steurer M, Gastl G, Gunsilius E, Grubeck-Loebenstein B (2003) Increase of regulatory T cells in the peripheral blood of cancer patients. Clin Cancer Res 9:606–612

    PubMed  Google Scholar 

  9. Viguier M, Lemaitre F, Verola O, Cho MS, Gorochov G, Dubertret L, Bachelez H, Kourilsky P, Ferradini L (2004) Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 173:1444–1453

    PubMed  CAS  Google Scholar 

  10. Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL, Kaiser LR, June CH (2002) Cutting edge: regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 168:4272–4276

    PubMed  CAS  Google Scholar 

  11. Shevach EM (2002) CD4+CD25+suppressor T cells: more questions than answers. Nat Rev Immunol 2:389–400

    PubMed  CAS  Google Scholar 

  12. Gallimore A, Sakaguchi S (2002) Regulation of tumour immunity by CD25 +T cells. Immunology 107:5–9

    Article  PubMed  CAS  Google Scholar 

  13. Steitz J, Brück J, Lenz J, Knop J, Tüting T (2001) Depletion of CD25(+) CD4(+) T cells and treatment with tyrosinase-related protein 2-transduced dendritic cells enhance the interferon alpha-induced, CD8(+) T-cell-dependent immune defense of B16 melanoma. Cancer Res 61:8643–8646

    PubMed  CAS  Google Scholar 

  14. Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP, Bieler JG, Emens LA, Reilly RT, Jaffee EM (2005) Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 201:1591–1602

    Article  PubMed  CAS  Google Scholar 

  15. Sutmuller RP, van Duivenvoorde LM, van Elsas A, Schumacher TN, Wildenberg ME, Allison JP, Toes RE, Offringa R, Melief CJ (2001) Synergism of cytotoxic T lymphocyte associated antigen 4 blockade and depletion of CD25(+) regulatory T cells in antitumor therapy reveals alternative pathways for suppression of autoreactive cytotoxic T lymphocyte responses. J Exp Med 194:823–832

    Article  PubMed  CAS  Google Scholar 

  16. Pasare C, Medzhitov R (2003) Toll pathway dependent blockade of CD4+CD25+T cell mediated suppression by dendritic cells. Science 299:1033–1036

    Article  PubMed  CAS  Google Scholar 

  17. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+CD4+T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    PubMed  CAS  Google Scholar 

  18. Klages K, Mayer CT, Lahl K, Loddenkemper C, Teng MW, Ngiow SF, Smyth MJ, Hamann A, Huehn J, Sparwasser T (2010) Selective Depletion of Foxp3 + Regulatory T Cells Improves Effective Therapeutic Vaccination against Established Melanoma. Cancer Res 70:7788–7799

    Article  PubMed  CAS  Google Scholar 

  19. Eklund JW, Kuzel TM (2005) Denileukin diftitox: a concise clinical review. Expert Rev Anticancer Ther 5:33–38

    Article  PubMed  CAS  Google Scholar 

  20. Knutson KL, Dang Y, Lu H, Lukas J, Almand B, Gad E, Azeke E, Disis ML (2006) IL-2 immunotoxin therapy modulates tumor-associated regulatory T cells and leads to lasting immune-mediated rejection of breast cancers in neu-transgenic mice. J Immunol 177:84–91

    PubMed  CAS  Google Scholar 

  21. Morse MA, Hobeika AC, Osada T, Serra D, Niedzwiecki D, Lyerly HK, Clay TM (2008) Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood 112:610–618

    Article  PubMed  CAS  Google Scholar 

  22. Litzinger MT, Fernando R, Curiel TJ, Grosenbach DW, Schlom J, Palena C (2007) IL-2 immunotoxin denileukin diftitox reduces regulatory T cells and enhances vaccine-mediated T-cell immunity. Blood 110:3192–3201

    Article  PubMed  CAS  Google Scholar 

  23. Gritzapis AD, Voutsas IF, Lekka E, Papamichail M, Baxevanis CN (2010) Peptide vaccination breaks tolerance to HER-2/neu by generating vaccine-specific FasL(+) CD4(+) T cells: first evidence for intratumor apoptotic regulatory T cells. Cancer Res 70:2686–2696

    Article  PubMed  CAS  Google Scholar 

  24. Gritzapis AD, Voutsas IF, Lekka E, Tsavaris N, Missitzis I, Sotiropoulou P, Perez S, Papamichail M, Baxevanis CN (2008) Identification of a novel immunogenic HLA-A*0201-binding epitope of HER-2/neu with potent antitumor properties. J Immunol 181:146–154

    PubMed  CAS  Google Scholar 

  25. Gritzapis AD, Mahaira LG, Perez SA, Cacoullos NT, Papamichail M, Baxevanis CN (2006) Vaccination with human HER-2/neu (435–443) CTL peptide induces effective antitumor immunity against HER-2/neu-expressing tumor cells in vivo. Cancer Res 66:5452–5460

    Article  PubMed  CAS  Google Scholar 

  26. Quezada SA, Peggs KS, Curran MA, Allison JP (2006) CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 116:1935–1945

    Article  PubMed  CAS  Google Scholar 

  27. Voutsas IF, Gritzapis AD, Mahaira LG, Salagianni M, von Hofe E, Kallinteris NL, Baxevanis CN (2007) Induction of potent CD4+ T cell-mediated antitumor responses by a helper HER-2/neu peptide linked to the Ii-Key moiety of the invariant chain. Int J Cancer 121:2031–2041

    Article  PubMed  CAS  Google Scholar 

  28. Whiteside TL (2010) Inhibiting the inhibitors: evaluating agents targeting cancer immunosuppression. Expert Opin Biol Ther 10:1019–1035

    Article  PubMed  CAS  Google Scholar 

  29. Ko K, Yamazaki S, Nakamura K, Nishioka T, Hirota K, Yamaguchi T, Shimizu J, Nomura T, Chiba T, Sakaguchi S (2005) Treatment of advanced tumors with agonistic anti-GITR mAb and its effects on tumor-infiltrating Foxp3+ CD25+ CD4+ regulatory T cells. J Exp Med 202:885–891

    Article  PubMed  CAS  Google Scholar 

  30. Labarrière N, Pandolfino MC, Gervois N, Khammari A, Tessier MH, Dréno B, Jotereau F (2002) Therapeutic efficacy of melanoma-reactive TIL injected in stage III melanoma patients. Cancer Immunol Immunother 51:532–538

    Article  PubMed  Google Scholar 

  31. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, Platell C, Iacopetta B (2009) Tumor-infiltrating FOXP3 + T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol 27:186–192

    Article  PubMed  Google Scholar 

  32. Hiraoka N, Onozato K, Kosuge T, Hirohashi S (2006) Prevalence of FOXP3 + regulatoryT cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res 12:5423–5434

    Article  PubMed  CAS  Google Scholar 

  33. Kobayashi N, Hiraoka N, Yamagami W, Ojima H, Kanai Y, Kosuge T, Nakajima A, Hirohashi S (2007) FOXP3 + regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13:902–911

    Article  PubMed  CAS  Google Scholar 

  34. Lee AM, Clear AJ, Calaminici M, Davies AJ, Jordan S, MacDougall F, Matthews J, Norton AJ, Gribben JG, Lister TA, Goff LK (2006) Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome. J Clin Oncol 24:5052–5059

    Article  PubMed  CAS  Google Scholar 

  35. Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H, Mosseri V, Laccourreye O, Bruneval P, Fridman WH et al (2006) Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 12:465–472

    Article  PubMed  CAS  Google Scholar 

  36. Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL (2007) The frequency and suppressor function of CD4+CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6301–6311

    Article  PubMed  CAS  Google Scholar 

  37. Petersen RP, Campa MJ, Sperlazza J, Conlon D, Joshi MB, Harpole DH Jr, Patz EF Jr (2006) Tumor infiltrating Foxp3 + regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 107:2866–2872

    Article  PubMed  Google Scholar 

  38. Leffers N, Gooden MJ, de Jong RA, Hoogeboom BN, ten Hoor KA, Hollema H, Boezen HM, van der Zee AG, Daemen T, Nijman HW (2009) Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunol Immunother 58:449–459

    Article  PubMed  Google Scholar 

  39. Strauss L, Whiteside TL, Knights A, Bergmann C, Knuth A, Zippelius A (2007) Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J Immunol 178:320–329

    PubMed  CAS  Google Scholar 

  40. Prince HM, Duvic M, Martin A, Sterry W, Assaf C, Sun Y, Straus D, Acosta M, Negro-Vilar A (2010) Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-cell lymphoma. J Clin Oncol 28:1870–1877

    Article  PubMed  CAS  Google Scholar 

  41. Kadin EM, Vonderheid EC (2010) Targeted therapies: Denileukin diftitox—a step towards a ‘magic bullet’ for CTCL. Nat Rev Clin Oncol 7:430–432

    Article  PubMed  CAS  Google Scholar 

  42. Rasku MA, Clem AL, Telang S, Taft B, Gettings K, Gragg H, Cramer D, Lear SC, McMasters KM, Miller DM, Chesney J (2008) Transient T cell depletion causes regression of melanoma metastases. J Transl Med 6:12. doi:10.1186/1479-5876-6-12

    Article  PubMed  Google Scholar 

  43. Chesney J, Rasku MA, Klarer AC, Miller DM, Telang S (2011) Effect of denileukin diftitox on serum GM-CSF and clinical responses in stage IV melanoma. ASCO Annual Meeting J Clin Oncol 29:2011 (suppl; abstr 2507)

    Google Scholar 

  44. Dannull J, Su Z, Rizzieri D, Yang BK, Coleman D, Yancey D, Zhang A, Dahm P, Chao N, Gilboa E, Vieweg J (2005) Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest 115:3623–3633

    Article  PubMed  CAS  Google Scholar 

  45. Taieb J, Chaput N, Schartz N, Roux S, Novault S, Ménard C, Ghiringhelli F, Terme M, Carpentier AF, Darrasse-Jèze G et al (2006) Chemoimmunotherapy of tumors: cyclophosphamide synergizes with exosome based vaccines. J Immunol 176:2722–2729

    PubMed  CAS  Google Scholar 

  46. Rech AJ, Vonderheide RH (2009) Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann N Y Acad Sci 1174:99–106

    Article  PubMed  CAS  Google Scholar 

  47. Martorelli D, Muraro E, Merlo A, Turrini R, Rosato A, Dolcetti R (2009) Role of CD4+ cytotoxic T lymphocytes in the control of viral diseases and cancer. Int Rev Immunol 29:371–402

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constantin N. Baxevanis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gritzapis, A.D., Voutsas, I.F. & Baxevanis, C.N. Ontak reduces the immunosuppressive tumor environment and enhances successful therapeutic vaccination in HER-2/neu-tolerant mice. Cancer Immunol Immunother 61, 397–407 (2012). https://doi.org/10.1007/s00262-011-1113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1113-4

Keywords

Navigation