Skip to main content

Advertisement

Log in

Interleukin 6 mediates production of interleukin 10 in metastatic melanoma

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

We previously reported that substantial amounts of IL-10, an immunomodulatory cytokine, are produced by cell suspensions of fresh human metastatic melanoma tissues. Production diminished with continuous culturing of cells, which suggests a pivotal interactive role between melanoma cells and the tumor microenvironment. In this study, we found that the culture media obtained from LPS-stimulated peripheral blood mononuclear cells induced IL-10 production by metastatic melanoma cells. Of the multiple cytokines present in the conditioned culture media, IL-6 was identified as the inducer of IL-10 production. A neutralizing antibody against IL-6 completely blocked the conditioned medium-induced IL-10 production. Metastatic melanoma cells that constitutively produce low amount of IL-10 increased IL-10 production in response to recombinant human IL-6 in a dose-dependent fashion. The response to exogenously added IL-6 was less significant in melanoma cells that produced high amounts of IL-6, probably due to pre-existing autocrine stimulation of IL-10 by endogenous IL-6. On the other hand, metastatic melanoma cells that do not constitutively produce IL-10 protein did not respond to exogenous IL-6. In IL-6-responsive melanoma cells, IL-6 increased STAT3 phosphorylation and inhibition of STAT3 signaling using siRNA or inhibitors for JAKs diminished IL-6-induced IL-10 production. In addition, inhibition of MEK and PI3K, but not mTOR, interfered with IL-10 production. Taken together, the data suggest that blocking of these signals leading to IL-10 production is a potential strategy to enhance an anti-melanoma immune response in metastatic melanoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Colombo MP, Mantovani A (2005) Targeting myelomonocytic cells to revert inflammation-dependent cancer promotion. Cancer Res 65:9113–9116

    Article  PubMed  CAS  Google Scholar 

  2. Gabrilovich DI, Chen HL, Girgis KR et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2:1096–1103

    Article  PubMed  CAS  Google Scholar 

  3. Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR (1993) Interleukin-10. Annu Rev Immunol 11:165–190

    Article  PubMed  CAS  Google Scholar 

  4. Asadullah K, Sterry W, Volk HD (2003) Interleukin-10 therapy—review of a new approach. Pharmacol Rev 55:241–269

    Article  PubMed  CAS  Google Scholar 

  5. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB (2004) Interleukin-10 and related cytokines and receptors. Annu Rev Immunol 22:929–979

    Article  PubMed  CAS  Google Scholar 

  6. Lattime EC, Mastrangelo MJ, Bagasra O, Li W, Berd D (1995) Expression of cytokine mRNA in human melanoma tissues. Cancer Immunol Immunother 41:151–156

    Article  PubMed  CAS  Google Scholar 

  7. Sato T, McCue P, Masuoka K et al (1996) Interleukin 10 production by human melanoma. Clin Cancer Res 2:1383–1390

    PubMed  CAS  Google Scholar 

  8. Kim J, Modlin RL, Moy RL et al (1995) IL-10 production in cutaneous basal and squamous cell carcinomas. A mechanism for evading the local T cell immune response. J Immunol 155:2240–2247

    PubMed  CAS  Google Scholar 

  9. Ordemann J, Jacobi CA, Braumann C, Schwenk W, Volk HD, Muller JM (2002) Immunomodulatory changes in patients with colorectal cancer. Int J Colorectal Dis 17:37–41

    Article  PubMed  CAS  Google Scholar 

  10. Knoefel B, Nuske K, Steiner T et al (1997) Renal cell carcinomas produce IL-6, IL-10, IL-11, and TGF-beta 1 in primary cultures and modulate T lymphocyte blast transformation. J Interferon Cytokine Res 17:95–102

    Article  PubMed  CAS  Google Scholar 

  11. Green AR, Green VL, White MC, Speirs V (1997) Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: identification of interleukin-8 as a potential regulatory factor in breast tumours. Int J Cancer 72:937–941

    Article  PubMed  CAS  Google Scholar 

  12. Dummer W, Becker JC, Schwaaf A, Leverkus M, Moll T, Brocker EB (1995) Elevated serum levels of interleukin-10 in patients with metastatic malignant melanoma. Melanoma Res 5:67–68

    Article  PubMed  CAS  Google Scholar 

  13. Nacinovic-Duletic A, Stifter S, Dvornik S, Skunca Z, Jonjic N (2008) Correlation of serum IL-6, IL-8 and IL-10 levels with clinicopathological features and prognosis in patients with diffuse large B-cell lymphoma. Int J Lab Hematol 30:230–239

    Article  PubMed  CAS  Google Scholar 

  14. Guney N, Soydinc HO, Basaran M et al (2009) Serum levels of interleukin-6 and interleukin-10 in Turkish patients with aggressive non-Hodgkin’s lymphoma. Asian Pac J Cancer Prev 10:669–674

    PubMed  Google Scholar 

  15. Mapara MY, Sykes M (2004) Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance. J Clin Oncol 22:1136–1151

    Article  PubMed  CAS  Google Scholar 

  16. Berd D, Sato T, Maguire HC Jr, Kairys J, Mastrangelo MJ (2004) Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J Clin Oncol 22:403–415

    Article  PubMed  CAS  Google Scholar 

  17. Berd D, Maguire HC Jr, Schuchter LM et al (1997) Autologous hapten-modified melanoma vaccine as postsurgical adjuvant treatment after resection of nodal metastases. J Clin Oncol 15:2359–2370

    PubMed  CAS  Google Scholar 

  18. Berd D, Maguire HC Jr, Mastrangelo MJ (1986) Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res 46:2572–2577

    PubMed  CAS  Google Scholar 

  19. Galizia G, Orditura M, Romano C et al (2002) Prognostic significance of circulating IL-10 and IL-6 serum levels in colon cancer patients undergoing surgery. Clin Immunol 102:169–178

    Article  PubMed  CAS  Google Scholar 

  20. Negrier S, Perol D, Menetrier-Caux C et al (2004) Interleukin-6, interleukin-10, and vascular endothelial growth factor in metastatic renal cell carcinoma: prognostic value of interleukin-6–from the Groupe Francais d’Immunotherapie. J Clin Oncol 22:2371–2378

    Article  PubMed  CAS  Google Scholar 

  21. Porta C, De Amici M, Quaglini S et al (2008) Circulating interleukin-6 as a tumor marker for hepatocellular carcinoma. Ann Oncol 19:353–358

    Article  PubMed  CAS  Google Scholar 

  22. Mouawad R, Benhammouda A, Rixe O et al (1996) Endogenous interleukin 6 levels in patients with metastatic malignant melanoma: correlation with tumor burden. Clin Cancer Res 2:1405–1409

    PubMed  CAS  Google Scholar 

  23. Taga T, Hibi M, Hirata Y et al (1989) Interleukin-6 triggers the association of its receptor with a possible signal transducer, gp130. Cell 58:573–581

    Article  PubMed  CAS  Google Scholar 

  24. Mackiewicz A, Schooltink H, Heinrich PC, Rose-John S (1992) Complex of soluble human IL-6-receptor/IL-6 up-regulates expression of acute-phase proteins. J Immunol 149:2021–2027

    PubMed  CAS  Google Scholar 

  25. Oh JW, Revel M, Chebath J (1996) A soluble interleukin 6 receptor isolated from conditioned medium of human breast cancer cells is encoded by a differentially spliced mRNA. Cytokine 8:401–409

    Article  PubMed  CAS  Google Scholar 

  26. Muller-Newen G, Kuster A, Hemmann U et al (1998) Soluble IL-6 receptor potentiates the antagonistic activity of soluble gp130 on IL-6 responses. J Immunol 161:6347–6355

    PubMed  CAS  Google Scholar 

  27. Winston LA, Hunter T (1995) JAK2, Ras, and Raf are required for activation of extracellular signal-regulated kinase/mitogen-activated protein kinase by growth hormone. J Biol Chem 270:30837–30840

    Article  PubMed  CAS  Google Scholar 

  28. Taga T, Kishimoto T (1997) Gp130 and the interleukin-6 family of cytokines. Annu Rev Immunol 15:797–819

    Article  PubMed  CAS  Google Scholar 

  29. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J 374:1–20

    Article  PubMed  CAS  Google Scholar 

  30. Lucas M, Zhang X, Prasanna V, Mosser DM (2005) ERK activation following macrophage FcgammaR ligation leads to chromatin modifications at the IL-10 locus. J Immunol 175:469–477

    PubMed  CAS  Google Scholar 

  31. Brose MS, Volpe P, Feldman M et al (2002) BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 62:6997–7000

    PubMed  CAS  Google Scholar 

  32. Wan PT, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  PubMed  CAS  Google Scholar 

  33. Goodall J, Wellbrock C, Dexter TJ, Roberts K, Marais R, Goding CR (2004) The Brn-2 transcription factor links activated BRAF to melanoma proliferation. Mol Cell Biol 24:2923–2931

    Article  PubMed  CAS  Google Scholar 

  34. Sumimoto H, Imabayashi F, Iwata T, Kawakami Y (2006) The BRAF-MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. J Exp Med 203:1651–1656

    Article  PubMed  CAS  Google Scholar 

  35. Terai M, Tamura Y, Alexeev V et al (2009) Human interleukin 10 receptor 1/IgG1-Fc fusion proteins: immunoadhesins for human IL-10 with therapeutic potential. Cancer Immunol Immunother 58:1307–1317

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Andrew Aplin at Kimmel Cancer Center of Thomas Jefferson University and Dr. Matthew J. McGinniss at Caris Life Sciences for analysis of BRAF and NRAS mutations on melanoma cell lines. We also thank Dr. Henry C. Maguire, Jr. for critical review of this article. This research was supported by the Bonnie Kroll Research Fund, the Marla Brecher Research Fund, and the Eye Melanoma Research Fund at Thomas Jefferson University. M Eto and G. D. Young were supported by a Pennsylvania CURE grant.

Conflicts of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takami Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Terai, M., Eto, M., Young, G.D. et al. Interleukin 6 mediates production of interleukin 10 in metastatic melanoma. Cancer Immunol Immunother 61, 145–155 (2012). https://doi.org/10.1007/s00262-011-1084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1084-5

Keywords

Navigation