Skip to main content

Advertisement

Log in

Intratumoral injection of α-gal glycolipids induces a protective anti-tumor T cell response which overcomes Treg activity

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

α-Gal glycolipids capable of converting tumors into endogenous vaccines, have α-gal epitopes (Galα1-3Galβ1-4GlcNAc-R) and are extracted from rabbit RBC membranes. α-Gal epitopes bind anti-Gal, the most abundant natural antibody in humans constituting 1% of immunoglobulins. α-Gal glycolipids insert into tumor cell membranes, bind anti-Gal and activate complement. The complement cleavage peptides C5a and C3a recruit inflammatory cells and APC into the treated lesion. Anti-Gal further opsonizes the tumor cells and targets them for effective uptake by recruited APC, via Fcγ receptors. These APC transport internalized tumor cells to draining lymph nodes, and present immunogenic tumor antigen peptides for activation of tumor specific T cells. The present study demonstrates the ability of α-gal glycolipids treatment to prevent development of metastases at distant sites and to protect against tumor challenge in the treated mice. Adoptive transfer studies indicate that this protective immune response is mediated by CD8+ T cells, activated by tumor lesions turned vaccine. This T cell activation is potent enough to overcome the suppressive activity of Treg cells present in tumor bearing mice, however it does not elicit an autoimmune response against antigens on normal cells. Insertion of α-gal glycolipids and subsequent binding of anti-Gal are further demonstrated with human melanoma cells, suggesting that intratumoral injection of α-gal glycolipids is likely to elicit a protective immune response against micrometastases also in cancer patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADCC:

Ab dependent cell mediated cytotoxicity

α-Gal epitope:

Galα1-3Galβ1-4GlcNAc-R epitope

CDC:

Complement dependent lysis

KO:

Knockout mice for the α1,3-galactosyltransferase gene

MAA:

Melanoma associated antigens

PKM:

Pig kidney membranes

TAA:

Tumor associated antigens

References

  1. Abdel-Motal UM, Guay HM, Wigglesworth K, Welsh RM, Galili U (2007) Increased immunogenicity of influenza virus vaccine by anti-Gal mediated targeting to antigen presenting cells. J Virol 81:9131–9141

    Article  PubMed  CAS  Google Scholar 

  2. Abdel-Motal UM, Wang S, Lu S, Wigglesworth K, Galili U (2006) Increased immunogenicity of HIV gp120 engineered to express Galα1-3Galβ1-4GlcNac-R epitopes. J Virol 80:6943–6951

    Article  PubMed  CAS  Google Scholar 

  3. Banchereau J, Briere F, Caux C et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767–811

    Article  PubMed  CAS  Google Scholar 

  4. Bloom MB, Perry-Lalley D, Robbins PF et al (1997) Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 185:453–459

    Article  PubMed  CAS  Google Scholar 

  5. Brigl M, Brenner MB (2004) CD1: antigen presentation and T cell function. Annu Rev Immunol 22:817–890

    Article  PubMed  CAS  Google Scholar 

  6. Clemente CG, Mihm MC Jr, Bufalino R, Zurrida S, Collini P, Cascinelli N (1996) Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer 77:1303–1310

    Article  PubMed  CAS  Google Scholar 

  7. Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar DM (2002) Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med 195:125–133

    Article  PubMed  CAS  Google Scholar 

  8. Dranoff G, Jaffee E, Lazenby A et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543

    Article  PubMed  CAS  Google Scholar 

  9. Dunn GP, Bruce A, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  PubMed  CAS  Google Scholar 

  10. Egilmez NK, Jong YS, Sabel MS, Jacob JS, Mathiowitz E, Bankert RB (2000) In situ tumor vaccination with interleukin-12-encapsulated biodegradable microspheres: induction of tumor regression and potent antitumor immunity. Cancer Res 60:3832–3837

    PubMed  CAS  Google Scholar 

  11. Furumoto K, Soares L, Engleman EG, Merad M (2004) Induction of potent antitumor immunity by in situ targeting of intratumoral DCs. J Clin Invest 113:774–777

    PubMed  CAS  Google Scholar 

  12. Galili U (2004) Autologous tumor vaccines processed to express α-gal epitopes: a practical approach to immunotherapy in cancer. Cancer Immunol Immunother 53:935–945

    Article  PubMed  CAS  Google Scholar 

  13. Galili U, LaTemple DC (1997) The natural anti-Gal antibody as a universal augmenter of autologous tumor vaccine immunogenicity. Immunol Today 18:281–285

    Article  PubMed  CAS  Google Scholar 

  14. Galili U, Macher BA, Buehler JS, Shohet B (1985) Human natural anti-α-galactosyl IgG. II. The specific recognition of α(1 → 3)-linked galactose residues. J Exp Med 162:573–582

    Article  PubMed  CAS  Google Scholar 

  15. Galili U, LaTemple DC, Radic MZ (1998) A sensitive assay for measuring α-gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation 65:1129–1132

    Article  PubMed  CAS  Google Scholar 

  16. Galili U, Rachmilewitz EA, Peleg A, Flechner I (1984) A unique natural human IgG antibody with anti-α-galactosyl specificity. J Exp Med 160:1519–1531

    Article  PubMed  CAS  Google Scholar 

  17. Galili U, Wigglesworth K, Abdel-Motal UM (2007) Intratumoral injection of α-gal glycolipids induces xenograft-like destruction and conversion of lesions into endogenous vaccines. J Immunol 178:4676–4687

    PubMed  CAS  Google Scholar 

  18. Galili U, Clark MR, Shohet SB, Buehler J, Macher BA (1987) Evolutionary relationship between the anti-Gal antibody and the Galα1 → 3Gal epitope in primates. Proc Natl Acad Sci USA 84:1369–1373

    Article  PubMed  CAS  Google Scholar 

  19. Galili U, Shohet SB, Kobrin E, Stults CLM, Macher BA (1988) Man, apes, and Old World monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J Biol Chem 263:17755–17762

    PubMed  CAS  Google Scholar 

  20. Galon J, Costes A, Sanchez-Cabo F et al (2006) Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 313:1960–1964

    Article  PubMed  CAS  Google Scholar 

  21. Gorelik E, Duty L, Anaraki F, Galili U (1995) Alterations of cell surface carbohydrates and inhibition of metastatic property of murine melanomas by α1,3-galactosyltransferase gene transfection. Cancer Res 55:4168–4173

    PubMed  CAS  Google Scholar 

  22. Groh V, Li YQ, Caio D, Hunder NN et al (2005) Efficient cross-priming of tumor antigen-specific T cells by dendritic cells sensitized with diverse anti-MICA opsonized tumor cells. Proc Natl Acad Sci USA 102:6461–6466

    Article  PubMed  CAS  Google Scholar 

  23. Hofbauer GF, Baur T, Bonnet MC, Tartour E, Burg G, Berinstein NL, Dummer R (2008) Clinical phase I intratumoral administration of two recombinant ALVAC canarypox viruses expressing human granulocyte–macrophage colony-stimulating factor or interleukin-2: the transgene determines the composition of the inflammatory infiltrate. Melanoma Res 18:104–111

    Article  PubMed  CAS  Google Scholar 

  24. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264:961–965

    Article  PubMed  CAS  Google Scholar 

  25. LaTemple DC, Abrams JT, Zhang SU, Galili U (1999) Increased immunogenicity of tumor vaccines complexed with anti-Gal: studies in knock out mice for α1, 3-galactosyltransferase. Cancer Res 59:3417–3423

    PubMed  CAS  Google Scholar 

  26. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174:7516–7523

    PubMed  CAS  Google Scholar 

  27. Maass G, Schmidt W, Berger M et al (1995) Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin-2 secreting tumor cells: three consecutive stages may be required for successful tumor vaccination. Proc Natl Acad Sci USA 92:5540–5544

    Article  PubMed  CAS  Google Scholar 

  28. Manches O, Plumas J, Lui L, Chaperot L, Molens JP, Sotto JJ, Bensa JC, Galili U (2005) Anti-Gal mediated targeting of human B lymphoma cells to antigen-presenting cells: a potential method for immunotherapy with autologous tumor cells. Haematologica 90:625–634

    PubMed  CAS  Google Scholar 

  29. Mastrangelo MJ, Maguire HC Jr, Eisenlohr LC et al (1999) Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma. Cancer Gene Ther 6:409–422

    Article  PubMed  CAS  Google Scholar 

  30. Mumberg D, Wick M, Schreiber H (1996) Unique tumor antigens redefined as mutant tumor-specific antigens. Semin Immunol 8:289–293

    Article  PubMed  CAS  Google Scholar 

  31. Ravetch JV, Bolland S (2001) IgG Fc receptors. Annu Rev Immunol 19:275–290

    Article  PubMed  CAS  Google Scholar 

  32. Regnault A, Lankar D, Lacabanne V et al (1999) Fc-gamma receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189:371–380

    Article  PubMed  CAS  Google Scholar 

  33. Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+ CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6:345–352

    Article  PubMed  CAS  Google Scholar 

  34. Shimizu J, Yamazaki S, Sakaguchi S (1999) Induction of tumor immunity by removing CD25+ CD4+ T cells: a common basis between tumor immunity and autoimmunity. J Immunol 163:5211–5218

    PubMed  CAS  Google Scholar 

  35. Tanemura M, Yin D, Chong AS, Galili U (2000) Differential immune response to α-gal epitopes on xenografts and allografts: implications for accommodation in xenotransplantation. J Clin Invest 105:301–310

    Article  PubMed  CAS  Google Scholar 

  36. Thall AD, Maly P, Lowe JB (1995) Oocyte Galα1-3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J Biol Chem 270:21437–21442

    Article  PubMed  CAS  Google Scholar 

  37. Turk MJ, Guevara-Patino JA, Rizzuto GA, Engelhorn ME, Sakaguchi S, Houghton AN (2004) Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med 200:771–782

    Article  PubMed  CAS  Google Scholar 

  38. Weir BA, Woo MS, Getz G et al (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450:893–898

    Article  PubMed  CAS  Google Scholar 

  39. Wood LD, Parsons D, Jones WS et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318:1108–1113

    Article  PubMed  CAS  Google Scholar 

  40. Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H, Fu YX (2005) Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med 201:779–791

    Article  PubMed  CAS  Google Scholar 

  41. Zhang L, Conejo-Garcia JR, Katsaros D (2003) Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 348:203–213

    Article  PubMed  CAS  Google Scholar 

  42. Zinkernagel RM, Ehl E, Aichele P, Kündig T, Hengartner H (1997) Antigen localization regulates immune responses in a dose and time dependent fashion: a geographical view of immune reactivity. Immunol Rev 156:199–209

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH grant CA122019 (U.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Galili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdel-Motal, U.M., Wigglesworth, K. & Galili, U. Intratumoral injection of α-gal glycolipids induces a protective anti-tumor T cell response which overcomes Treg activity. Cancer Immunol Immunother 58, 1545–1556 (2009). https://doi.org/10.1007/s00262-009-0662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0662-2

Keywords

Navigation