Skip to main content

Advertisement

Log in

Autologous tumor vaccines processed to express α-gal epitopes: a practical approach to immunotherapy in cancer

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

This review describes a method by which the human natural anti-Gal antibody can be exploited as an endogenous adjuvant for targeting autologous tumor vaccines to antigen-presenting cells (APCs). Tumor cells remaining in the patient after completion of surgery, radiation, and chemotherapy are the cause of tumor relapse. These residual tumor cells can not be detected by imaging, but their destruction may be feasible by active immunotherapy. Since specific tumor-associated antigens (TAAs) have not been identified for the majority of cancers, irradiated autologous tumor vaccines have been considered as an immunotherapy treatment that may elicit an immune response against the residual tumor cells expressing TAAs. However, tumor cells evolve in cancer patients in a stealthy way, i.e., they are not detected by APCs, even in the form of vaccine. Effective targeting of tumor vaccines for uptake by APCs is a prerequisite for eliciting an effective immune response which requires transport of the vaccine by APCs from the vaccination site to the draining lymph nodes. In the lymph nodes, the APCs transporting the vaccine process and present peptides, including the autologous TAA peptides for activation of the tumor-specific T cells. The required targeting of vaccines to APCs is feasible in humans by the use of anti-Gal. This antibody interacts specifically with the α-gal epitope (Galα1-3Galβ1-4GlcNAc-R) and is the only known natural IgG antibody to be present in large amounts in all humans who are not severely immunocompromised. The α-gal epitope can be synthesized on any type of human tumor cell by the use of recombinant α1,3galactosyltransferase (α1,3GT). Solid tumors obtained from surgery are homogenized and their membranes subjected to α-gal epitope synthesis. Similarly, α-gal epitopes can be synthesized on intact tumor cells from hematological malignancies. Administration of irradiated autologous tumor vaccines processed to express α-gal epitopes results in in situ opsonization of the vaccinating cells or cell membranes due to anti-Gal binding to these epitopes. The bound antibody serves to target the autologous tumor vaccine to APCs because the Fc portion of the antibody interacts with Fcγ receptors on APCs. Since patients receive their own TAAs, the vaccine is customized for autologous TAAs in the individual patient. The repeated vaccination with such autologous tumor vaccines provides the immune system of each patient with an additional opportunity to be effectively activated by the autologous TAAs. In some of the immunized patients this activation may be potent enough to induce an immune-mediated eradication of the residual tumor cells expressing these TAAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A–D

Similar content being viewed by others

Abbreviations

Ab:

Antibody

Ag:

Antigen

APC:

Antigen-presenting cell

DC:

Dendritic cell

FcγR:

Fcγ receptor

α-gal epitope:

Galα1-3Galβ1-4GlcNAc-R

α1,3GT:

α-1,3-Galactosyltransferase

KO mice:

Knockout mice for α1,3GT

OVA:

Ovalbumin

SA:

Sialic acid

TAA:

Tumor-associated antigen

References

  1. Kawakami Y, Robbins PF, Wang RF, Parkhurst M, Kang X, Rosenberg SA (1998) The use of melanosomal proteins in the immunotherapy of melanoma. J Immunother 21:237

    CAS  PubMed  Google Scholar 

  2. Pardoll DM (1998) Cancer vaccines. Nat Immunol 4:525

    CAS  Google Scholar 

  3. Renkvist N, Castelli C, Robbins PF, Parmiani G (2001) A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 501:3

    Article  Google Scholar 

  4. Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411:380

    CAS  PubMed  Google Scholar 

  5. Van Der Bruggen P, Zhang Y, Chaux P, Stroobant V, Panichelli C, Schultz ES, Chapiro J, Van Den Eynde BJ, Brasseur F, Boon T (2002) Tumor-specific shared antigenic peptides recognized by human T cells. Immunol Rev 188:51

    Article  PubMed  Google Scholar 

  6. Overwijk WW, Restifo NP (2000) Autoimmunity and the immunotherapy of cancer: targeting the “self” to destroy the “other”. Crit Rev Immunol 20:433

    CAS  PubMed  Google Scholar 

  7. Scanlan MJ, Chen YT, Williamson B, Gure AO, Stockert E, Gordan JD, Tureci O, Sahin U, Pfreundschuh M, Old LJ (1998) Characterization of human colon cancer antigens recognized by autologous antibodies. Int J Cancer 76:652

    CAS  PubMed  Google Scholar 

  8. Türeci Ö, Schmitt H, Fadle N, Pfreundschuh M, Sahin U (1997) Molecular definition of a novel human galectin which is immunogenic in patients with Hodgkin’s disease. J Biol Chem 272:6416

    CAS  PubMed  Google Scholar 

  9. Wolchok JD, Livingston PO (2001) Vaccines for melanoma: translating basic immunology into new therapies. Lancet Oncol 2:205

    Article  CAS  PubMed  Google Scholar 

  10. Beasley RP, Hwang LY, Lin CC, Chien CS (1981) Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22,707 men in Taiwan. Lancet 21(2):1129

    Article  Google Scholar 

  11. Beaudenon S, Kremsdorf D, Croissant O, Jablonska S, Wain-Hobson S, Orth G (1986) A novel type of human papillomavirus associated with genital neoplasias. Nature 321:246

    CAS  PubMed  Google Scholar 

  12. Chen JY, Hwang LY, Beasley RP, Chien CS, Yang CS (1985) Antibody response to Epstein–Barr-virus-specific DNase in 13 patients with nasopharyngeal carcinoma in Taiwan: a retrospective study. J Med Virol 16:99

    CAS  PubMed  Google Scholar 

  13. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991

    Article  CAS  PubMed  Google Scholar 

  14. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3:999

    Article  CAS  PubMed  Google Scholar 

  15. Livingston P (2001) The unfulfilled promise of melanoma vaccines. Clin Cancer Res 7:1837

    CAS  PubMed  Google Scholar 

  16. Hernando JJ, Park TW, Kubler K, Offergeld R, Schlebusch H, Bauknecht T (2002) Vaccination with autologous tumour antigen-pulsed dendritic cells in advanced gynaecological malignancies: clinical and immunological evaluation of a phase I trial. Cancer Immunol Immunother 51:45

    Article  CAS  PubMed  Google Scholar 

  17. Holtl L, Rieser C, Papesh C, Ramoner R, Herold M, Klocker H, Radmayr C, Stenzl A, Bartsch G, Thurnher M (1999) Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells. J Urol 161:777

    PubMed  Google Scholar 

  18. Marten A, Flieger D, Renoth S, Weineck S, Albers P, Compes M, Schottker B, Ziske C, Engelhart S, Hanfland P, Krizek L, Faber C, von Ruecker A, Muller S, Sauerbruch T, Schmidt-Wolf IG (2002) Therapeutic vaccination against metastatic renal cell carcinoma by autologous dendritic cells: preclinical results and outcome of a first clinical phase I/II trial. Cancer Immunol Immunother 51:637

    Article  PubMed  Google Scholar 

  19. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R, Burg G, Schadendorf D (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328

    CAS  PubMed  Google Scholar 

  20. Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM, Taidi B, Rajapaksa R, Caspar CB, Okada CY, van Beckhoven A, Liles TM, Engleman EG, Levy R (2002) Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 99:1517

    Article  CAS  PubMed  Google Scholar 

  21. Zitvogel L, Mayordomo JI, Tjandrawan T, DeLeo AB, Clarke MR, Lotze MT, Storkus WJ (1996) Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 183:87

    CAS  PubMed  Google Scholar 

  22. Su Z, Dannull J, Heiser A, Yancey D, Pruitt S, Madden J, Coleman D, Niedzwiecki D, Gilboa E, Vieweg J (2003) Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res 63:2127

    CAS  PubMed  Google Scholar 

  23. Rafiq K, Bergtold A, Clynes R (2002) Immune complex-mediated antigen presentation induces tumor immunity. J Clin Invest 110:71

    Article  CAS  PubMed  Google Scholar 

  24. Zinkernagel RM, Ehl E, Aichele P, Kündig T, Hengartner H (1997) Antigen localization regulates immune responses in a dose and time dependent fashion: a geographical view of immune reactivity. Immunol Rev 156:199

    CAS  PubMed  Google Scholar 

  25. Berd D, Sato T, Cohn H, Maguire HC Jr, Mastrangelo MJ (2001) Treatment of metastatic melanoma with autologous, hapten-modified melanoma vaccine: regression of pulmonary metastases. Int J Cancer 94:531

    CAS  PubMed  Google Scholar 

  26. Berd D, Sato T, Maguire HC Jr, Kairys J, Mastrangelo MJ (2004) Immunopharmacologic analysis of an autologous, hapten-modified melanoma vaccine. J Clin Oncol 22:403

    Article  PubMed  Google Scholar 

  27. Pawelec G (1999) Tumour escape from the immune response: the last hurdle for successful immunotherapy of cancer? Cancer Immunol Immunother 48:343

    PubMed  Google Scholar 

  28. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 19(392):245

    Article  Google Scholar 

  29. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ, Pulendran B, Palucka K (2000) Immunobiology of dendritic cells. Annu Rev Immunol 18:767

    CAS  PubMed  Google Scholar 

  30. Maass G, Schmidt W, Berger M, Schilcher F, Koszik F, Schneeberger A, Stingl G, Birnstiel ML, Scheighoffer T (1995) Priming of tumor-specific T cells in the draining lymph nodes after immunization with interleukin-2 secreting tumor cells: three consecutive stages may be required for successful tumor vaccination. Proc Natl Acad Sci U S A 92:5540

    CAS  PubMed  Google Scholar 

  31. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H (2002) Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγRIIIa gene. Blood 99:754

    Article  CAS  PubMed  Google Scholar 

  32. Ravetch JV, Clynes RA (1998) Divergent roles for Fc receptors and complement in vivo. Annu Rev Immunol 16:421

    Article  CAS  PubMed  Google Scholar 

  33. Fuchs EJ, Matzinger P (1996) Is cancer dangerous to the immune system? Semin Immunol 8:271

    CAS  PubMed  Google Scholar 

  34. Dranoff G, Jaffe E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulate potent specific and long-lasting anti-tumor immunity. Proc Natl Acad Sci U S A 90:3539

    CAS  PubMed  Google Scholar 

  35. Levitsky HI, Montgomery J, Ahmadzadeh M, Staveley-O’Carroll K, Guarnieri F, Longo DL, Kwak LW (1996) Immunization with granulocyte-macrophage colony-stimulating factor-transduced, but not B7-1-transduced, lymphoma cells primes idiotype-specific T cells and generates potent systemic antitumor immunity. J Immunol 156:3858

    CAS  PubMed  Google Scholar 

  36. Mach N, Gillessen S, Wilson SB, Sheehan C, Mihm M, Dranoff G (2000) Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res 60:3239

    CAS  PubMed  Google Scholar 

  37. Slingluff CL Jr, Petroni GR, Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Hibbitts S, Teates D, Neese PY, Grosh WW, Chianese-Bullock KA, Woodson EM, Wiernasz CJ, Merrill P, Gibson J, Ross M, Engelhard VH (2003) Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol 21:4016

    Article  PubMed  Google Scholar 

  38. Fanger NA, Wardwell K, Shen L, Tedder TF, Guyre PM (1996) Type I (CD64) and Type II (CD32) Fc receptor-mediated phagocytosis by human blood dendritic cells. J Immunol 157:541

    CAS  PubMed  Google Scholar 

  39. Schmitt DA, Hanan D, Bieber T, Dezutter-Dambuyant C, Schmitt D, Fabre M, Pauly G, Cazenave J-P (1990) Human epidermal Langerhans cells express only the 40-kilodalton Fcγ receptor (FcRII). J Immunol 144:4284

    CAS  PubMed  Google Scholar 

  40. Unkeless JC (1989) Functional heterogeneity of human Fc receptors for immunoglobulin G. J Clin Invest 83:355

    CAS  PubMed  Google Scholar 

  41. Dhodapkar KM, Krasovsky J, Williamson B, Dhodapkar MV (2002) Antitumor monoclonal antibodies enhance cross-presentation of cellular antigens and the generation of myeloma-specific killer T cells by dendritic cells. J Exp Med 195:125

    Google Scholar 

  42. Machy P, Serre K, Leserman L (2000) Class I-restricted presentation of exogenous antigen acquired by Fcγ receptor-mediated endocytosis is regulated in dendritic cells. Eur J Immunol 30:848

    Article  CAS  PubMed  Google Scholar 

  43. Regnault A, Lankar D, Lacabanne V, Rodriguez A, Thery C, Rescigno M, Saito T, Verbeek S, Bonnerot C, Ricciardi-Castagnoli P, Amigorena S (1999) Fcγ receptor-mediated induction of dendritic cell maturation and major histocompatibility complex class I-restricted antigen presentation after immune complex internalization. J Exp Med 189:371

    Google Scholar 

  44. Schuurhuis DH, Ioan-Facsinay A, Nagelkerken B, van Schip JJ, Sedlik C, Melief CJ, Verbeek JS, Ossendorp F (2002) Antigen-antibody immune complexes empower dendritic cells to efficiently prime specific CD8+ CTL responses in vivo. J Immunol 168:2240

    CAS  PubMed  Google Scholar 

  45. Gosselin EJ, Wardwell K, Gosselin DR, Alter N, Fisher JL, Guyre P (1992) Enhanced antigen presentation using human Fcγ receptor (monocyte/macrophage)-specific immunogens. J Immunol 149:3477

    CAS  PubMed  Google Scholar 

  46. Manca F, Fenoglio D, LiPira G, Kunkl A, Celada F (1991) Effect of antigen/antibody ratio on macrophage uptake, processing and presentation to T cells of antigen complexed with polyclonal antibodies. J Exp Med 173:37

    CAS  PubMed  Google Scholar 

  47. Stoner RD, Terres G (1963) Enhanced antitoxin responses in irradiated mice elicited by complexes of tetanus toxoid and specific antibody. J Immunol 91:761

    CAS  PubMed  Google Scholar 

  48. Celis E, Chang TW (1984) Antibodies to hepatitis B surface antigen potentiate the response of human T lymphocyte clones to the same antigen. Science 224:297

    CAS  PubMed  Google Scholar 

  49. Celis E, Abraham KG, Miller RW (1987) Modulation of the immunological response to hepatitis B virus by antibodies. Hepatology 7:563

    CAS  PubMed  Google Scholar 

  50. Houston WE, Kremer RJ, Crabbs CL, Spertzel RO (1977) Inactivated Venezuelan equine encephalomyelitis virus vaccine complexed with specific antibody: enhanced primary immune response and altered pattern of antibody class elicited. J Infect Dis 135:600

    CAS  PubMed  Google Scholar 

  51. Villinger F, Mayne AE, Bostik P, Mori K, Jensen PE, Ahmed R, Ansari AA (2003) Evidence for antibody-mediated enhancement of simian immunodeficiency virus (SIV) Gag antigen processing and cross presentation in SIV-infected rhesus macaques. J Virol 77:10

    Article  CAS  PubMed  Google Scholar 

  52. Stager S, Alexander J, Kirby AC, Botto M, Rooijen NV, Smith DF, Brombacher F, Kaye PM (2003) Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8(+) T-cell responses. Nat Med 9:1287

    Article  PubMed  Google Scholar 

  53. Galili U, Rachmilewitz EA, Peleg A, Flechner I (1984) A unique natural human IgG antibody with anti-α-galactosyl specificity. J Exp Med 160:1519

    CAS  PubMed  Google Scholar 

  54. Galili U, LaTemple DC (1997) The natural anti-Gal antibody as a universal augmenter of autologous vaccine immunogenicity. Immunol Today 18:281

    Article  CAS  PubMed  Google Scholar 

  55. Galili U, Macher BA, Buehler J, Shohet SB (1985) Human natural anti-α-galactosyl IgG, II: The specific recognition of α(1-3)-linked galactose residues. J Exp Med 162:573

    CAS  PubMed  Google Scholar 

  56. Galili U, Buehler J, Shohet SB, Macher BA (1987) The human natural anti-Gal IgG, III: the subtlety of immune tolerance in man as demonstrated by crossreactivity between natural anti-Gal and anti-B antibodies. J Exp Med 165:693

    CAS  PubMed  Google Scholar 

  57. Galili U, Mandrell RE, Hamadeh RM, Shohet SB, Griffis JM (1988) Interaction between human natural anti-α-galactosyl immunoglobulin G and bacteria of the human flora. Infect Immun 56:1730

    CAS  PubMed  Google Scholar 

  58. Galili U, Anaraki F, Thall A, Hill-Black C, Radic M (1993) One percent of human circulating B lymphocytes are capable of producing the natural anti-Gal antibody. Blood 82:2485

    CAS  PubMed  Google Scholar 

  59. Galili U, Chen ZC, DeGeest K (2003) Expression of α-gal epitopes on ovarian carcinoma membranes to be used as a novel autologous tumor vaccine. Gynecol Oncol 90:100

    Article  CAS  PubMed  Google Scholar 

  60. Galili U, Clark MR, Shohet SB, Buehler J, Macher BA (1987) Evolutionary relationship between the anti-Gal antibody and the Galα1-3Gal epitope in primates. Proc Natl Acad Sci U S A 84:1369

    CAS  PubMed  Google Scholar 

  61. Galili U, Shohet SB, Kobrin E, Stults CLM, Macher BA (1988) Man, apes, and old world monkeys differ from other mammals in the expression of α-galactosyl epitopes on nucleated cells. J Biol Chem 263:17755

    CAS  PubMed  Google Scholar 

  62. Galili U, Andrews P (1995) Suppression of α-galactosyl epitopes synthesis and production of the natural anti-Gal antibody: a major evolutionary event in ancestral old world primates. J Hum Evol 29:433

    Article  Google Scholar 

  63. Galili U, Swanson K (1991) Gene sequences suggest inactivation of α1,3galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc Natl Acad Sci U S A 88:7401

    CAS  PubMed  Google Scholar 

  64. Joziasse DH, Shaper JH, Van den Eijnden DH, Van Tunen AH, Shaper NL (1989) Bovine α1-3galactosyltransferase: isolation and characterization of a cDNA clone—identification of homologous sequences in human genomic DNA. J Biol Chem 264:14290

    CAS  PubMed  Google Scholar 

  65. Joziasse DH, Shaper JH, Jabs EW, Shaper NL (1991) Characterization of an α1-3-galactosyltransferase homologue on human chromosome 12 that is organized as a processed pseudogene. J Biol Chem 266:6991

    CAS  PubMed  Google Scholar 

  66. Larsen RD, Rivera-Marrero CA, Ernst LK, Cummings RD, Lowe JB (1990) Frameshift and nonsense mutations in a human genomic sequence homologous to a murine UDP-Galß-D-Gal(1,4)-D-GlcNAcα(1,3) galactosyltransferase cDNA. J Biol Chem 265:7055

    CAS  PubMed  Google Scholar 

  67. Galili U (1993) Interaction of the natural anti-Gal antibody with α-galactosyl epitopes: a major obstacle for xenotransplantation in humans. Immunol Today 14:480

    Article  CAS  PubMed  Google Scholar 

  68. Good H, Cooper DKC, Malcolm AJK, Ippolito RM, Koren E, Neethling FA, Ye Y, Zuhdi N, Lamontagne LR (1992) Identification of carbohydrate structures which bind human anti-porcine Abs: implications for discordant grafting in man. Transplant Proc 24:559

    CAS  PubMed  Google Scholar 

  69. Sandrin MS, Vaughan HA, Dabkowski PL, McKenzie IF (1993) Anti-pig IgM antibodies in human serum react predominantly with Gal(α1-3)Gal epitopes. Proc Natl Acad Sci U S A 90:11391

    CAS  PubMed  Google Scholar 

  70. Collins BH, Cotterell AH, McCurry KR, Alvarado CG, Magee JC, Parker W, Platt JL (1995) Cardiac xenografts between primate species provide evidence for the importance of α-galactosyl determinant in hyperacute rejection. J Immunol 154:5500

    CAS  PubMed  Google Scholar 

  71. LaTemple DC, Henion TR, Anaraki F, Galili U (1996) Synthesis of α-galactosyl epitopes by recombinant α1,3galactosyl transferase for opsonization of human tumor cell vaccines by anti-galactose. Cancer Res 56:3069

    CAS  PubMed  Google Scholar 

  72. Galili U, Repik PM, Anaraki F, Mozdzanowska K, Washko G, Gerhard W (1996) Enhancement of antigen presentation of influenza virus hemagglutinin by the natural human anti-Gal antibody. Vaccine 14:321

    Article  CAS  PubMed  Google Scholar 

  73. Watier H, Guillaumin JM, Vallee I, Thibault G, Gruel Y, Lebranchu Y, Bardos P (1996) Human NK cell-mediated direct and IgG-dependent cytotoxicity against xenogeneic porcine endothelial cells. Transplant Immunol 4:293

    Article  CAS  Google Scholar 

  74. Henion TR, Macher BA, Anaraki F, Galili U (1994) Defining the minimal size of catalytically active primate α1,3galactosyltransferase: structure function studies on the recombinant truncated enzyme. Glycobiology 4:192

    Google Scholar 

  75. Larsen RD, Rajan VP, Ruff M, Kukowska-Latallo J, Cummings RD, Lowe JB (1989) Isolation of a cDNA encoding murine UDP-galactose: α-D-galactosyl-1,4-N-acetyl-D-glucosamine α1,3galactosyltransferase: expression cloning by gene transfer. Proc Natl Acad Sci U S A 86:8227

    CAS  PubMed  Google Scholar 

  76. Galili U, Anaraki F (1995) α-galactosyl (Galα1-3Galβ1-4GlcNAc-R) epitopes on human cells: synthesis of the epitope on human red cells by recombinant primate α1,3galactosyltransferase expressed in E. coli. Glycobiology 5:775

    CAS  PubMed  Google Scholar 

  77. Chen ZC, Tanemura M, Galili U (2001) Synthesis of α-gal epitopes (Galα1-3Galß1-4GlcNAc-R) on human tumor cells by recombinant α1,3galactosyltransferase produced in Pichia pastoris. Glycobiology 11:577

    Article  CAS  PubMed  Google Scholar 

  78. Galili U, Chen ZC, Manches O, Plumas J, Preisler H (2001) Preparation of autologous leukemia and lymphoma vaccines expressing α-gal epitopes. J Hematother Stem Cell Res 10:501

    Article  CAS  PubMed  Google Scholar 

  79. Galili U, LaTemple DC, Radic MZ (1998) A sensitive assay for measuring α-gal epitope expression on cells by a monoclonal anti-Gal antibody. Transplantation 65:1129

    Article  CAS  PubMed  Google Scholar 

  80. Deriy L, Chen ZC, Gao GP, Galili U (2002) Expression of α-gal epitopes on HeLa cells transduced with adenovirus containing α1,3galactosyltransferase cDNA. Glycobiology 12:135

    Article  CAS  PubMed  Google Scholar 

  81. Simons JW, Jaffee EM, Weber CE, Levitsky HI, Nelson WG, Carducci MA, Lazenby AJ, Cohen LK, Finn CC, Clift SM, Hauda KM, Beck LA, Leiferman KM, Owens AH Jr, Piantadosi S, Dranoff G, Mulligan RC, Pardoll DM, Marshall FF (1997) Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res 57:1537

    CAS  PubMed  Google Scholar 

  82. Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S, Tanabe K, Duda R, Mentzer S, Jaklitsch M, Bueno R, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Mihm M, Dranoff G (2003) Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 21:3343

    Article  PubMed  Google Scholar 

  83. LaTemple DC, Abrams JT, Zhang SU, Galili U (1999) Increased immunogenicity of tumor vaccines complexed with anti-Gal: studies in knock out mice for α1,3galactosyltranferase. Cancer Res 59:3417

    CAS  PubMed  Google Scholar 

  84. Thall AD, Maly P, Lowe JB (1995) Oocyte Galα1-3Gal epitopes implicated in sperm adhesion to the zona pellucida glycoprotein ZP3 are not required for fertilization in the mouse. J Biol Chem 270:21437

    Article  CAS  PubMed  Google Scholar 

  85. LaTemple DC, Galili U (1998) Adult and neonatal anti-Gal response in knock-out mice for α-galactosyltransferase. Xenotransplantation 5:191

    CAS  PubMed  Google Scholar 

  86. Gorelik E, Duty L, Anaraki F, Galili U (1995) Alterations of cell surface carbohydrates and inhibition of metastatic property of murine melanomas by α1,3galactosyltransferase gene transfection. Cancer Res 55:4168

    CAS  PubMed  Google Scholar 

  87. Unfer RC, Hellrung D, Link CJ Jr (2003) Immunity to the α(1,3)galactosyl epitope provides protection in mice challenged with colon cancer cells expressing α(1,3)galactosyl-transferase: a novel suicide gene for cancer gene therapy. Cancer Res 63:987

    CAS  PubMed  Google Scholar 

  88. Arca ML, Krauss JC, Strome SE Cameron MJ, Chang AE (1996) Diverse manifestations of tumorigenicity and immunogenicity displayed by the poorly immunogenic B16-BL6 melanoma transduced with cytokine genes. Cancer Immunol Immunother 42:237

    Article  CAS  PubMed  Google Scholar 

  89. Bekeshi JG, Holland JF, Roboz JP (1977) Specific immunotherapy with neuraminidase-modified leukemic cells: experimental and clinical trials. Med Clin North Am 61:1083

    PubMed  Google Scholar 

  90. Groth CG, Korsgren O, Tibel, A, Tollerman J, Muller E, Bolinder J, Ostman J, Reinholt FP, Hellerstrom C, Andersson A (1994) Transplantation of fetal porcine pancreas to diabetic patients: biochemical and histological evidence for graft survival. Lancet 344:1402

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uri Galili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galili, U. Autologous tumor vaccines processed to express α-gal epitopes: a practical approach to immunotherapy in cancer. Cancer Immunol Immunother 53, 935–945 (2004). https://doi.org/10.1007/s00262-004-0524-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0524-x

Keywords

Navigation