Skip to main content

Advertisement

Log in

Enhancement of superantigen activity and antitumor response of staphylococcal enterotoxin C2 by site-directed mutagenesis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Bacterial superantigen staphylococcal enterotoxins (SEs) tremendously stimulate polyclonal T cells bearing particular TCR Vβ domains when binding to MHC II molecules, suggesting that they could be a candidate of new antitumor agent. SEC2, an important member of superantigen family, has been used in clinical trial as an immuntherapy agent for cancer treatment in China, and obtained some encouraging effects. However, the presence of immunosuppression and endotoxic activity limits the therapeutic dosage of SEC2, and influences its antitumor effect in clinic. Therefore, the enhancement of superantigen activity and antitumor effect of SEC2 could effectively make compensation for the disadvantages mentioned above. In this study, a superantigen SEC2(T20L/G22E) mutant was generated by site-directed mutagenesis, and efficiently expressed in E. coli BL21(DE3). The results showed that SEC2(T20L/G22E) mutant exhibited a significantly enhanced superantigen activity and antitumor response, compared with native SEC2 in vitro. Further toxicity assay in vivo indicated that SEC2(T20L/G22E) mutant had no significant increase in emetic and pyrogenic activity compared with SEC2, which suggested that the mutant SEC2(T20L/G22E) could be used as a potentially powerful candidate for cancer immunotherapy, and could make compensation for the deficiency of native SEC2 in clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bohach GA, Fast DJ, Nelson RD, Schlievert PM (1990) Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Crit Rev Microbiol 17:251–272

    Article  PubMed  CAS  Google Scholar 

  2. Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13:16–34

    Article  PubMed  CAS  Google Scholar 

  3. Hovde CJ, Hackett SP, Bohach GA (1990) Nucleotide sequence of the staphylococcal enterotoxin C3 gene: sequence comparison of all three type C staphylococcal enterotoxins. Mol Gen Genet 220:329–333

    Article  PubMed  CAS  Google Scholar 

  4. Su YC, Wong AC (1995) Identification and purification of a new staphylococcal enterotoxin H. Appl Environ Microbiol 61:1438–1443

    PubMed  CAS  Google Scholar 

  5. Munson SH, Tremaine MT, Betley MJ, Welch RA (1998) Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infect Immun 66:3337–3348

    PubMed  CAS  Google Scholar 

  6. Orwin PM, Leung DY, Donahue HL, Novick RP, Schlievert PM (2001) Biochemical and biological properties of staphylococcal enterotoxin K. Infect Immun 69:360–366

    Article  PubMed  CAS  Google Scholar 

  7. Letertre C, Perelle S, Dilasser F, Fach P (2003) Identification of a new putative enterotoxin SEU encoded by the egc cluster of Staphylococcus aureus. J Appl Microbiol 95:38–43

    Article  PubMed  CAS  Google Scholar 

  8. Omoe K, Imanishi K, Hu DL, Kato H, Fugane Y, Abe Y, Hamaoka S, Watanabe Y, Nakane A, Uchiyama T, Shinagawa K (2005) Characterization of novel staphylococcal enterotoxin-like toxin type p. Infect Immun 73:5540–5546

    Article  PubMed  CAS  Google Scholar 

  9. Marrack P, Kappler J (1990) The staphylococcal enterotoxins and their relatives. Science 248:705–717

    Article  PubMed  CAS  Google Scholar 

  10. Kalland T, Hedlund G, Dohlsten M, Lando PA (1991) Staphylococcal enterotoxin-dependent cell-mediated cytotoxicity. Immunol Today 12:147–150

    PubMed  Google Scholar 

  11. Hedlund G, Dohlsten M, Petersson C, Kalland T (1993) Superantigen-based tumor therapy: in vivo activation of cytotoxic T cells. Cancer Immunol Immunother 36:89–93

    Article  PubMed  CAS  Google Scholar 

  12. Ochi A, Migita K, Xu J, Siminovitch K (1993) In vivo tumor immunotherapy by a bacterial superantigen. J Immunol 151:3180–3186

    PubMed  CAS  Google Scholar 

  13. Belfrage H, Bhiladvala P, Hedlund G, Dohlsten M, Kalland T (1994) Combined activation of murine lymphocytes with staphylococcal enterotoxin and interleukin-2 results in additive cytotoxic activity. Cancer Immunol Immunother 38:265–271

    PubMed  CAS  Google Scholar 

  14. Hansson J, Ohlsson L, Persson R, Andersson G, Ilbäck NG, Litton MJ, Kalland T, Dohlsten M (1997) Genetically engineered superantigens as tolerable antitumor agents. Proc Natl Acad Sci USA 94:2489–2494

    Article  PubMed  CAS  Google Scholar 

  15. Ma W, Yu H, Wang Q, Bao J, Yan J, Jin H (2004) In vitro biological activities of transmembrane superantigen staphylococcal enterotoxin A fusion protein. Cancer Immunol Immunother 53:118–124

    Article  PubMed  CAS  Google Scholar 

  16. Alpaugh RK, Schultz J, McAleer C, Giantonio BJ, Persson R, Burnite M, Nielsen SE, Vitek L, Persson B, Weiner LM (1998) Superantigen-targeted therapy: phase I escalating repeat dose trial of the fusion protein PNU-214565 in patients with advanced gastrointestinal malignancies. Clin Cancer Res 4:1903–1914

    PubMed  CAS  Google Scholar 

  17. Forsberg G, Ohlsson L, Brodin T, Björk P, Lando PA, Shaw D, Stern PL, Dohlsten M (2001) Therapy of human non-small-cell lung carcinoma using antibody targeting of a modified superantigen. Br J Cancer 85:129–136

    Article  PubMed  CAS  Google Scholar 

  18. Terman DS, Bohach G, Vandenesch F, Etienne J, Lina G, Sahn SA (2006) Staphylococcal superantigens of the enterotoxin gene cluster (egc) for treatment of stage IIIb non-small cell lung cancer with pleural effusion. Clin Chest Med 27:321–334

    Article  PubMed  Google Scholar 

  19. Ren S, Terman DS, Bohach G, Silvers A, Hansen C, Colt H, Sahn SA (2004) Intrapleural staphylococcal superantigen induces resolution of malignant pleural effusions and a survival benefit in non-small cell lung cancer. Chest 126:1529–1539

    Article  PubMed  Google Scholar 

  20. Perabo FG, Willert PL, Wirger A, Schmidt DH, Wardelmann E, Sitzia M, von Ruecker A, Mueller SC (2005) Preclinical evaluation of superantigen (staphylococcal enterotoxin B) in the intravesical immunotherapy of superficial bladder cancer. Int J Cancer 115:591–598

    Article  PubMed  CAS  Google Scholar 

  21. Chen TZ (2001) The exploitation of HAS and its application in tumor therapy. Prog Microbiol Immunol China 29:63–69

    CAS  Google Scholar 

  22. Shu S, Sussman JJ, Chang AE (1993) In vivo antitumor efficacy of tumor-draining lymph node cells activated with nonspecific T-cell reagents. J Immunother 14:279–285

    Article  CAS  Google Scholar 

  23. Inoue M, Plautz GE, Shu S (1996) Treatment of intracranial tumors by systemic transfer of superantigen-activated tumor-draining lymph node T cells. Cancer Res 56:4702–4708

    PubMed  CAS  Google Scholar 

  24. Wang F, Huang Q, Zhou L (2002) Anti-glioma effect of external superantigen SEC in SCID mice in vivo. Acta Univ Medicinalis Anhui 37:336–338

    Google Scholar 

  25. Xu MK, Zhang CG (2006) Gene expression and function study of fusion immunotoxin anti-Her-2-scFv-SEC2 in Escherichia coli. Appl Microbiol Biotechnol 70:78–84

    Article  CAS  Google Scholar 

  26. Jie KG, Jiang H, Sun L, Wang HR, Zheng YL, Li Y, Jiang YQ (2007) The pilot study of anti-tumor effects versus immunosuppression of Staphylococcal Enterotoxin C. Cancer Biol Ther 6:1–8

    Article  Google Scholar 

  27. Turner TN, Smith CL, Bohach GA (1992) Residues 20, 22, and 26 determine the subtype specificities of staphylococcal enterotoxins C1 and C2. Infect Immun 60:694–697

    PubMed  CAS  Google Scholar 

  28. Lamphear JG, Bohach GA, Rich RR (1998) Structural dichotomy of Staphylococcal enterotoxin C superantigens leading to MHC Class II-independent activation of T lymphocytes. J Immunol 160:2107–2114

    PubMed  CAS  Google Scholar 

  29. Fields BA, Malchiodi EL, Li H, Ysern X, Stauffacher CV, Schlievert PM, Karjalainen K, Mariuzza RA (1996) Crystal structure of a T-cell receptor beta-chain complexed with a superantigen. Nature 384:188–192

    Article  PubMed  CAS  Google Scholar 

  30. Schad EM, Papageorgiou AC, Svensson LA, Acharya KR (1997) A structural and functional comparison of staphylococcal enterotoxins A and C2 reveals remarkable similarity and dissimilarity. J Mol Biol 269:270–280

    Article  PubMed  CAS  Google Scholar 

  31. Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR (1989) Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59

    Article  PubMed  CAS  Google Scholar 

  32. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 12:5436–5467

    Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  34. Hufnagle WO, Tremaine MT, Betley MJ (1991) The carboxylterminal region of staphylococcal enterotoxin A is required for a fully active molecule. Infect Immun 59:2126–2134

    PubMed  CAS  Google Scholar 

  35. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  36. Martin WJ, Marcus S (1964) Relation of pyrogenic and emetic properties of enterobacteriaceal endotoxin and of staphylococcal enterotoxin. J Bacteriol 87:1019–1026

    PubMed  CAS  Google Scholar 

  37. Clark WG, Page JS (1968) Pyrogenic responses to staphylococcal enterotoxins A and B in cats. J Bacteriol 96:1940–1946

    PubMed  CAS  Google Scholar 

  38. Anonymous (2002) The United States Pharmacopeia. U.S. Pharmacopeial Convention, Rockville

    Google Scholar 

  39. Weber AK, Wahn U, Renz H (2000) Superantigen-induced T cell death by apoptosis: Analysis on a single cell level and effect of IFN-gamma and IL-4 treatment. Int Arch Allergy Immunol 121:215–223

    Article  PubMed  CAS  Google Scholar 

  40. Nielsen SE, Zeuthen J, Lund B, Persson B, Alenfall J, Hansen HH (2000) Phase I study of single, escalating doses of a superantigen-antibody fusion protein (PNU-214565) in patients with advanced colorectal or pancreatic carcinoma. J Immunother 23:146–153

    Article  PubMed  CAS  Google Scholar 

  41. Cheng JD, Babb JS, Langer C, Aamdal S, Robert F, Engelhardt LR, Fernberg O, Schiller J, Forsberg G, Alpaugh RK, Weiner LM, Rogatko A (2004) Individualized patient dosing in phase I clinical trials: the role of escalation with overdose control in PNU-214936. J Clin Oncol 22:602–609

    Article  PubMed  CAS  Google Scholar 

  42. Mollick JA, Cook RG, Rich RR (1989) Class II MHC molecules are specific receptors for staphylococcus enterotoxin A. Science 244:817–820

    Article  PubMed  CAS  Google Scholar 

  43. Hedlund G, Dohlsten M, Lando PA, Kalland T (1990) Staphylococcal enterotoxins direct and trigger CTL killing of autologous HLA-DR+ mononuclear leukocytes and freshly prepared leukemia cells. Cell Immunol 129:426–434

    Article  PubMed  CAS  Google Scholar 

  44. Yagi J, Baron J, Buxser S, Janeway CA Jr (1990) Bacterial proteins that mediate the association of a defined subset of T cell receptor: CD4 complexes with class II MHC. J Immunol 144:892–901

    PubMed  CAS  Google Scholar 

  45. Taub DD, Newcomb JR, Rogers TJ (1992) Effect of isotypic and allotypic variations of MHC class II molecules on staphylococcal enterotoxin presentation to murine T cells. Cell Immunol 141:263–278

    Article  PubMed  CAS  Google Scholar 

  46. Grossman D, Lamphear JG, Mollick JA, Betley MJ, Rich RR (1992) Dual roles for class II major histocompatibility complex molecules in staphylococcal enterotoxin-induced cytokine production and in vivo toxicity. Infect Immun 60:5190–5196

    PubMed  CAS  Google Scholar 

  47. Harris TO, Grossman D, Kappler JW, Marrack P, Rich RR, Betley MJ (1993) Lack of complete correlation between emetic and T-cell-stimulatory activities of staphylococcal enterotoxins. Infect immun 61:3175–3183

    PubMed  CAS  Google Scholar 

  48. Holzer U, Orlikowsky T, Zehrer C, Bethge W, Dohlsten M, Kalland T, Niethammer D, Dannecker GE (1997) T-cell stimulation and cytokine release induced by staphylococcal enterotoxin A (SEA) and the SEAD227A mutant. Immunology 90:74–80

    Article  PubMed  CAS  Google Scholar 

  49. Takemura S, Kudo T, Asano R, Suzuki M, Tsumoto K, Sakurai N, Katayose Y, Kodama H, Yoshida H, Ebara S, Saeki H, Imai K, Matsuno S, Kumagai I (2002) A mutated superantigen SEA D227A fusion diabody specific to MUC1 and CD3 in targeted cancer immunotherapy for bile duct carcinoma. Cancer Immunol Immunother 51:33–44

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant from the Sciential Innovation Project of the Institute of Applied Ecology of the CAS (06LYQYC001) and the initial fund for doctoral program of the Institute of Applied Ecology of the CAS (08SBS111S3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Xu, M., Zhang, H. et al. Enhancement of superantigen activity and antitumor response of staphylococcal enterotoxin C2 by site-directed mutagenesis. Cancer Immunol Immunother 58, 677–686 (2009). https://doi.org/10.1007/s00262-008-0590-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-008-0590-6

Keywords

Navigation