Skip to main content

Advertisement

Log in

Rapid and potent induction of cell death and loss of NK cell cytotoxicity against oral tumors by F(ab′)2 fragment of anti-CD16 antibody

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Freshly isolated untreated NK cells undergo rapid apoptosis and lose their cytotoxic function upon the addition of F(ab′)2 fragment of anti-CD16 antibodies. Loss of NK cell cytotoxic function after treatment with F(ab′)2 fragment of anti-CD16 antibody can be seen against K562 and UCLA-2 oral tumor cells when either added immediately in the co-cultures of NK cells with the tumor cells or after pre-treatment of NK cells with the antibody before their addition to the tumor cells. Addition of Interleukin-2 (IL-2) in combination with anti-CD16 antibody to NK cells delayed the induction of DNA fragmentation in NK cells, and even though decreased cytotoxicity could still be observed against K562 and UCLA-2 oral tumors when compared to IL-2 alone treated NK cells, the cytotoxicity levels remained relatively higher and approached those obtained by untreated NK cells in the absence of antibody treatment. No increases in IFN-γ, Granzymes A and B, Perforin and TRAIL genes could be seen in NK cells treated with anti-CD16 antibody. Neither secretion of IFN-γ nor increased expression of CD69 activation antigen could be observed after the treatment of NK cells with anti-CD16 antibody. Furthermore, IL-2 mediated increase in CD69 surface antigens was down-modulated by anti-CD16 antibody. Finally, the addition of anti-CD16 antibody to co-cultures of NK cells with tumor target cells was not inhibitory for the secretion of VEGF by oral tumor cells, unlike those co-cultured with untreated or IL-2 treated NK cells. Thus, binding and triggering of CD16 receptor on NK cells may enhance oral tumor survival and growth by decreased ability of NK cells to suppress VEGF secretion or induce tumor cell death during the interaction of NK cells with oral tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmed NN, Grimes HL et al (1997) Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc Natl Acad Sci USA 94(8):3627–3632

    Article  PubMed  CAS  Google Scholar 

  2. Aleman M, Garcia A et al (2002) Mycobacterium tuberculosis-induced activation accelerates apoptosis in peripheral blood neutrophils from patients with active tuberculosis. Am J Respir Cell Mol Biol 27(5):583–592

    PubMed  CAS  Google Scholar 

  3. Anderson P, Caligiuri M et al (1990) Fc gamma receptor type III (CD16) is included in the zeta NK receptor complex expressed by human natural killer cells. Proc Natl Acad Sci USA 87(6):2274–2278

    Article  PubMed  CAS  Google Scholar 

  4. Azzoni L, Anegon I et al (1995) Ligand binding to Fc gamma R induces c-myc-dependent apoptosis in IL-2-stimulated NK cells. J Immunol 154(2):491–499

    PubMed  CAS  Google Scholar 

  5. Bonnema JD, Karnitz LM et al (1994) Fc receptor stimulation of phosphatidylinositol 3-kinase in natural killer cells is associated with protein kinase C-independent granule release and cell-mediated cytotoxicity. J Exp Med 180(4):1427–1435

    Article  PubMed  CAS  Google Scholar 

  6. Cambier JC (1995) Antigen and Fc receptor signaling. The awesome power of the immunoreceptor tyrosine-based activation motif (ITAM). J Immunol 155(7):3281–3285

    PubMed  CAS  Google Scholar 

  7. Cavalcanti M, Jewett A et al (1999) Irreversible cancer cell-induced functional anergy and apoptosis in resting and activated NK cells. Int J Oncol 14(2):361–366

    PubMed  CAS  Google Scholar 

  8. Chan AC, Kadlecek TA et al (1994) ZAP-70 deficiency in an autosomal recessive form of severe combined immunodeficiency. Science 264(5165):1599–1601

    Article  PubMed  CAS  Google Scholar 

  9. Chu DH, Spits H et al (1996) The Syk protein tyrosine kinase can function independently of CD45 or Lck in T cell antigen receptor signaling. Embo J 15(22):6251–6261

    PubMed  CAS  Google Scholar 

  10. Coudert JD, Zimmer J et al (2005) Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells. Blood 106(5):1711–1717

    Article  PubMed  CAS  Google Scholar 

  11. Durand V, Pers JO et al (2001) Soluble Fcgamma receptor IIIb alters the function of polymorphonuclear neutrophils but extends their survival. Eur J Immunol 31(7):1952–1961

    Article  PubMed  CAS  Google Scholar 

  12. Ferreira V, Sidenius N et al (1999) In vivo inhibition of NF-kappa B in T-lineage cells leads to a dramatic decrease in cell proliferation and cytokine production and to increased cell apoptosis in response to mitogenic stimuli, but not to abnormal thymopoiesis. J Immunol 162(11):6442–6450

    PubMed  CAS  Google Scholar 

  13. Fleit HB, Wright SD et al (1982) Human neutrophil Fc gamma receptor distribution and structure. Proc Natl Acad Sci USA 79(10):3275–3279

    Article  PubMed  CAS  Google Scholar 

  14. Fung MM, Chu YL et al (2005) IL-2- and STAT5-regulated cytokine gene expression in cells expressing the Tax protein of HTLV-1. Oncogene 24(29):4624–4633

    Article  PubMed  CAS  Google Scholar 

  15. Gabrilovich D, Ishida T et al (1998) Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 92(11):4150–4166

    PubMed  CAS  Google Scholar 

  16. Gabrilovich DI, Chen HL et al (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat Med 2(10):1096–1103

    Article  PubMed  CAS  Google Scholar 

  17. Guarini A, Riera L et al (1997) Transfer of the interleukin-2 gene into human cancer cells induces specific antitumor recognition and restores the expression of CD3/T-cell receptor associated signal transduction molecules. Blood 89(1):212–218

    PubMed  CAS  Google Scholar 

  18. Gumperz JE, Parham P (1995) The enigma of the natural killer cell. Nature 378(6554):245–248

    Article  PubMed  CAS  Google Scholar 

  19. Hoffmann TK, Dworacki G et al (2002) Spontaneous apoptosis of circulating T lymphocytes in patients with head and neck cancer and its clinical importance. Clin Cancer Res 8(8):2553–2562

    PubMed  Google Scholar 

  20. Hoffmann TK, Muller-Berghaus J et al (2002) Alterations in the frequency of dendritic cell subsets in the peripheral circulation of patients with squamous cell carcinomas of the head and neck. Clin Cancer Res 8(6):1787–1793

    PubMed  Google Scholar 

  21. Hu PF, Hultin LE et al (1995) Natural killer cell immunodeficiency in HIV disease is manifest by profoundly decreased numbers of CD16+CD56+ cells and expansion of a population of CD16dimCD56- cells with low lytic activity. J Acquir Immune Defic Syndr Hum Retrovirol 10(3):331–340

    PubMed  CAS  Google Scholar 

  22. Isakov N (1997) Immunoreceptor tyrosine-based activation motif (ITAM), a unique module linking antigen and Fc receptors to their signaling cascades. J Leukoc Biol 61(1):6–16

    PubMed  CAS  Google Scholar 

  23. Jewett A (2001) Activation of c-Jun N-terminal kinase in the absence of NFkappaB function prior to induction of NK cell death triggered by a combination of anti-class I and anti-CD16 antibodies. Hum Immunol 62(4):320–331

    Article  PubMed  CAS  Google Scholar 

  24. Jewett A, Bonavida B (1995) Target-induced anergy of natural killer cytotoxic function is restricted to the NK-target conjugate subset. Cell Immunol 160(1):91–97

    Article  PubMed  CAS  Google Scholar 

  25. Jewett A, Bonavida B (1996) Target-induced inactivation and cell death by apoptosis in a subset of human NK cells. J Immunol 156(3):907–915

    PubMed  CAS  Google Scholar 

  26. Jewett A, Bonavida B (2000) MHC-Class I antigens regulate both the function and the survival of human peripheral blood NK cells: role of endogenously secreted TNF-alpha. Clin Immunol 96(1):19–28

    Article  PubMed  CAS  Google Scholar 

  27. Jewett A, Cacalano NA et al (2006) Coengagement of CD16 and CD94 receptors mediates secretion of chemokines and induces apoptotic death of naive natural killer cells. Clin Cancer Res 12(7 Pt 1):1994–2003

    Article  PubMed  CAS  Google Scholar 

  28. Jewett A, Cacalano NA et al (2006) Inhibition of nuclear factor kappa B (NFkappaB) activity in oral tumor cells prevents depletion of NK cells and increases their functional activation. Cancer Immunol Immunother 55(9):1052–1063

    Article  PubMed  CAS  Google Scholar 

  29. Jewett A, Cavalcanti M et al (1997) Pivotal role of endogenous TNF-alpha in the induction of functional inactivation and apoptosis in NK cells. J Immunol 159(10):4815–4822

    PubMed  CAS  Google Scholar 

  30. Jewett A, Gan XH et al (1996) Differential secretion of TNF-alpha and IFN-gamma by human peripheral blood-derived NK subsets and association with functional maturation. J Clin Immunol 16(1):46–54

    Article  PubMed  CAS  Google Scholar 

  31. Jiang K, Zhong B et al (2003) Regulation of Akt-dependent cell survival by Syk and Rac. Blood 101(1):236–244

    Article  PubMed  CAS  Google Scholar 

  32. Jin Y, Damaj BB et al (2005) Human resting CD16-, CD16+ and IL-2-, IL-12-, IL-15- or IFN-alpha-activated natural killer cells differentially respond to sphingosylphosphorylcholine lysophosphatidylcholine and platelet-activating factor. Eur J Immunol 35(9):2699–2708

    Article  PubMed  CAS  Google Scholar 

  33. Jones J, Morgan BP (1995) Apoptosis is associated with reduced expression of complement regulatory molecules, adhesion molecules and other receptors on polymorphonuclear leucocytes: functional relevance and role in inflammation. Immunology 86(4):651–660

    PubMed  CAS  Google Scholar 

  34. Kaasinen ES, Harju LM et al (2002) Inhibition of natural, interleukin-2 stimulated and bacillus Calmette-Guerin enhanced cytotoxicity with anti-CD16 antibodies. J Urol 167(5):2209–2214

    Article  PubMed  CAS  Google Scholar 

  35. Kagi D, Ledermann B et al (1994) Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature 369(6475):31–37

    Article  PubMed  CAS  Google Scholar 

  36. Kawakami H, Tomita M et al (2005) Transcriptional activation of surviving through the NF-kappaB pathway by human T-cell leukemia virus type I tax. Int J Cancer 115(6):967–974

    Article  PubMed  CAS  Google Scholar 

  37. Kuss I, Saito T et al (1999) Clinical significance of decreased zeta chain expression in peripheral blood lymphocytes of patients with head and neck cancer. Clin Cancer Res 5(2):329–334

    PubMed  CAS  Google Scholar 

  38. Lai P, Rabinowich H et al (1996) Alterations in expression and function of signal-transducing proteins in tumor-associated T and natural killer cells in patients with ovarian carcinoma. Clin Cancer Res 2(1):161–173

    PubMed  CAS  Google Scholar 

  39. Liu CP, Ueda R et al (1993) Abnormal T cell development in CD3-zeta-/- mutant mice and identification of a novel T cell population in the intestine. EMBO J 12(12):4863–4875

    PubMed  CAS  Google Scholar 

  40. Mandelboim O, Malik P et al (1999) Human CD16 as a lysis receptor mediating direct natural killer cell cytotoxicity. Proc Natl Acad Sci USA 96(10):5640–5644

    Article  PubMed  CAS  Google Scholar 

  41. Molina TJ, Kishihara K et al (1992) Profound block in thymocyte development in mice lacking p56lck. Nature 357(6374):161–164

    Article  PubMed  CAS  Google Scholar 

  42. Mori S, Jewett A et al (1998) Differential regulation of human NK cell-associated gene expression following activation by IL-2, IFN-alpha and PMA/ionomycin. Int J Oncol 12(5):1165–1170

    PubMed  CAS  Google Scholar 

  43. Mori S, Jewett A et al (1997) The participation of the Fas-mediated cytotoxic pathway by natural killer cells is tumor-cell-dependent. Cancer Immunol Immunother 44(5):282–290

    Article  PubMed  CAS  Google Scholar 

  44. Negishi I, Motoyama N et al (1995) Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376(6539):435–438

    Article  PubMed  CAS  Google Scholar 

  45. Nusbaum P, Laine C et al (2004) Early membrane events in polymorphonuclear cell (PMN) apoptosis: membrane blebbing and vesicle release, CD43 and CD16 down-regulation and phosphatidylserine externalization. Biochem Soc Trans 32(Pt3):477–479

    Article  PubMed  CAS  Google Scholar 

  46. Orloff DG, Ra CS et al (1990) Family of disulphide-linked dimers containing the zeta and eta chains of the T-cell receptor and the gamma chain of Fc receptors. Nature 347(6289):189–191

    Article  PubMed  CAS  Google Scholar 

  47. Ortaldo JR, Mason AT et al (1995) Receptor-induced death in human natural killer cells: involvement of CD16. J Exp Med 181(1):339–344

    Article  PubMed  CAS  Google Scholar 

  48. Pao LI, Cambier JC (1997) Syk, but not Lyn, recruitment to B cell antigen receptor and activation following stimulation of CD45- B cells. J Immunol 158(6):2663–2669

    PubMed  CAS  Google Scholar 

  49. Paranjpe A, Cacalano NA et al (2007) N-acetylcysteine protects dental pulp stromal cells from HEMA-induced apoptosis by inducing differentiation of the cells. Free Radic Biol Med 43(10):1394–1408

    Article  PubMed  CAS  Google Scholar 

  50. Patankar MS, Yu J et al (2005) Potent suppression of natural killer cell response mediated by the ovarian tumor marker CA125. Gynecol Oncol 99(3):704–713

    Article  PubMed  CAS  Google Scholar 

  51. Perussia B, Starr S et al (1983) Human natural killer cells analyzed by B73.1, a monoclonal antibody blocking Fc receptor functions. I. Characterization of the lymphocyte subset reactive with B73.1. J Immunol 130(5):2133–2141

    PubMed  CAS  Google Scholar 

  52. Perussia B, Trinchieri G et al (1984) The Fc receptor for IgG on human natural killer cells: phenotypic, functional, and comparative studies with monoclonal antibodies. J Immunol 133(1):180–189

    PubMed  CAS  Google Scholar 

  53. Ravetch JV, Perussia B (1989) Alternative membrane forms of Fc gamma RIII(CD16) on human natural killer cells and neutrophils. Cell type-specific expression of two genes that differ in single nucleotide substitutions. J Exp Med 170(2):481–497

    Article  PubMed  CAS  Google Scholar 

  54. Rivera-Walsh I, Cvijic ME et al (2000) The NF-kappa B signaling pathway is not required for Fas ligand gene induction but mediates protection from activation-induced cell death. J Biol Chem 275(33):25222–25230

    Article  PubMed  CAS  Google Scholar 

  55. Romero-Reyes M, Head C et al (2007) Potent induction of TNF-alpha during interaction of immune effectors with oral tumors as a potential mechanism for the loss of NK cell viability and function. Apoptosis 12(11):2063–2075

    Google Scholar 

  56. Rosenberg SA, Lotze MT (1986) Cancer immunotherapy using interleukin-2 and interleukin-2-activated lymphocytes. Annu Rev Immunol 4:681–709

    Article  PubMed  CAS  Google Scholar 

  57. Takai T, Li M et al (1994) FcR gamma chain deletion results in pleiotrophic effector cell defects. Cell 76(3):519–529

    Article  PubMed  CAS  Google Scholar 

  58. Zoller KE, MacNeil IA et al (1997) Protein tyrosine kinases Syk and ZAP-70 display distinct requirements for Src family kinases in immune response receptor signal transduction. J Immunol 158(4):1650–1659

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This manuscript is dedicated to the memory of Frank Joseph Jewett for his courageous fight against cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anahid Jewett.

Additional information

This work was supported by RO1-DE18830 from NIH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jewett, A., Teruel, A., Romero, M. et al. Rapid and potent induction of cell death and loss of NK cell cytotoxicity against oral tumors by F(ab′)2 fragment of anti-CD16 antibody. Cancer Immunol Immunother 57, 1053–1066 (2008). https://doi.org/10.1007/s00262-007-0437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0437-6

Keywords

Navigation