Skip to main content

Advertisement

Log in

GM-CSF-secreting cancer immunotherapies: preclinical analysis of the mechanism of action

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting tumor cell immunotherapies have demonstrated long-lasting, and specific anti-tumor immune responses in animal models. The studies reported here specifically evaluate two aspects of the immune response generated by such immunotherapies: the persistence of irradiated tumor cells at the immunization site, and the breadth of the immune response elicited to tumor associated antigens (TAA) derived from the immunotherapy. To further define the mechanism of GM-CSF-secreting cancer immunotherapies, immunohistochemistry studies were performed using the B16F10 melanoma tumor model. In contrast to previous reports, our data revealed that the irradiated tumor cells persisted and secreted high levels of GM-CSF at the injection site for more than 21 days. Furthermore, dense infiltrates of dendritic cells were observed only in mice treated with GM-CSF-secreting B16F10 cells, and not in mice treated with unmodified B16F10 cells with or without concurrent injection of rGM-CSF. In addition, histological studies also revealed enhanced neutrophil and CD4+ T cell infiltration, as well as the presence of apoptotic cells, at the injection site of mice treated with GM-CSF-secreting tumor cells. To evaluate the scope of the immune response generated by GM-CSF-secreting cancer immunotherapies, several related B16 melanoma tumor cell subclones that exist as a result of genetic drift in the original cell line were used to challenge mice previously immunized with GM-CSF-secreting B16F10 cells. These studies revealed that GM-CSF-secreting cancer immunotherapies elicit T cell responses that effectively control growth of related but antigenically distinct tumors. Taken together, these studies provide important new insights into the mechanism of action of this promising novel cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chang DZ, Lomazow W, Joy Somberg C, Stan R, Perales MA (2004) Granulocyte–macrophage colony stimulating factor: an adjuvant for cancer vaccines. Hematology 9:207–215

    Article  PubMed  CAS  Google Scholar 

  2. Fleetwood AJ, Cook AD, Hamilton JA (2005) Functions of granulocyte-macrophage colony-stimulating factor. Crit Rev Immunol 25:405–428

    Article  PubMed  CAS  Google Scholar 

  3. Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte–macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543

    Article  PubMed  CAS  Google Scholar 

  4. Borrello I, Sotomayor EM, Rattis FM, Cooke SK, Gu L, Levitsky HI (2000) Sustaining the graft-versus-tumor effect through posttransplant immunization with granulocyte–macrophage colony-stimulating factor (GM-CSF)-producing tumor vaccines. Blood 95:3011–3019

    PubMed  CAS  Google Scholar 

  5. Machiels JP, Reilly RT, Emens LA, Ercolini AM, Lei RY, Weintraub D, Okoye FI, Jaffee EM (2001) Cyclophosphamide, doxorubicin, and paclitaxel enhance the antitumor immune response of granulocyte/macrophage-colony stimulating factor-secreting whole-cell vaccines in HER-2/neu tolerized mice. Cancer Res 61:3689–3697

    PubMed  CAS  Google Scholar 

  6. Driessens G, Hamdane M, Cool V, Velu T, Bruyns C (2004) Highly successful therapeutic vaccinations combining dendritic cells and tumor cells secreting granulocyte macrophage colony-stimulating factor. Cancer Res 64:8435–8442

    Article  PubMed  CAS  Google Scholar 

  7. Sanda MG, Ayyagari SR, Jaffee EM, Epstein JI, Clift SL, Cohen LK, Dranoff G, Pardoll DM, Mulligan RC, Simons JW (1994) Demonstration of a rational strategy for human prostate cancer gene therapy. J Urol 151:622–628

    PubMed  CAS  Google Scholar 

  8. Dunussi-Joannopoulos K, Dranoff G, Weinstein HJ, Ferrara JL, Bierer BE, Croop JM (1998) Gene immunotherapy in murine acute myeloid leukemia: granulocyte-macrophage colony-stimulating factor tumor cell vaccines elicit more potent antitumor immunity compared with B7 family and other cytokine vaccines. Blood 91:222–230

    PubMed  CAS  Google Scholar 

  9. Levitsky HI, Montgomery J, Ahmadzadeh M, Staveley-O’Carroll K, Guarnieri F, Longo DL, Kwak LW (1996) Immunization with granulocyte-macrophage colony-stimulating factor-transduced, but not B7-1-transduced, lymphoma cells primes idiotype-specific T cells and generates potent systemic antitumor immunity. J Immunol 156:3858–3865

    PubMed  CAS  Google Scholar 

  10. Mach N, Gillessen S, Wilson SB, Sheehan C, Mihm M, Dranoff G (2000) Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand. Cancer Res 60:3239–3246

    PubMed  CAS  Google Scholar 

  11. Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264:961–965

    Article  PubMed  CAS  Google Scholar 

  12. Dranoff G (2003) GM-CSF-secreting melanoma vaccines. Oncogene 22:3188–192

    Article  PubMed  CAS  Google Scholar 

  13. Daro E, Pulendran B, Brasel K, Teepe M, Pettit D, Lynch DH, Vremec D, Robb L, Shortman K, McKenna HJ, Maliszewski CR, Maraskovsky E (2000) Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low)CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J Immunol 165:49–58

    PubMed  CAS  Google Scholar 

  14. Shi FS, Weber S, Gan J, Rakhmilevich AL, Mahvi DM (1999) Granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted by cDNA-transfected tumor cells induces a more potent antitumor response than exogenous GM-CSF. Cancer Gene Ther 6:81–88

    Article  PubMed  CAS  Google Scholar 

  15. Golumbek PT, Azhari R, Jaffee EM, Levitsky HI, Lazenby A, Leong K, Pardoll DM (1993) Controlled release, biodegradable cytokine depots: a new approach in cancer vaccine design. Cancer Res 53:5841–5844

    PubMed  CAS  Google Scholar 

  16. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D, Naldini L (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    PubMed  CAS  Google Scholar 

  17. Ji Q, Gondek D, Hurwitz AA (2005) Provision of granulocyte-macrophage colony-stimulating factor converts an autoimmune response to a self-antigen into an antitumor response. J Immunol 175:1456–1463

    PubMed  CAS  Google Scholar 

  18. Kalat M, Kupcu Z, Schuller S, Zalusky D, Zehetner M, Paster W, Schweighoffer T (2002) In vivo plasmid electroporation induces tumor antigen-specific CD8+ T-cell responses and delays tumor growth in a syngeneic mouse melanoma model. Cancer Res 62:5489–5494

    PubMed  CAS  Google Scholar 

  19. Bloom MB, Perry-Lalley D, Robbins PF, Li Y, el-Gamil M, Rosenberg SA, Yang JC (1997) Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 185:453–459

    Article  PubMed  CAS  Google Scholar 

  20. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA, Dellemijn TA, Antony PA, Spiess PJ, Palmer DC, Heimann DM, Klebanoff CA, Yu Z, Hwang LN, Feigenbaum L, Kruisbeek AM, Rosenberg SA, Restifo NP (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198:569–580

    Article  PubMed  CAS  Google Scholar 

  21. Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, Carroll MW, Liu C, Moss B, Rosenberg SA, Restifo NP (1998) gp100/pmel 17 is a murine tumor rejection antigen: induction of “self”-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 188:277–286

    Article  PubMed  CAS  Google Scholar 

  22. Eggert AO, Andersen MH, Voigt H, Schrama D, Kampgen E, Straten PT, Becker JC (2004) Characterization of mouse MAGE-derived H-2Kb-restricted CTL epitopes. Eur J Immunol 34:3285–3290

    Article  PubMed  CAS  Google Scholar 

  23. Nemunaitis J (2005) Vaccines in cancer: GVAX, a GM-CSF gene vaccine. Expert Rev Vaccines 4:259–274

    Article  PubMed  CAS  Google Scholar 

  24. Li B, Lalani AS, Harding TC, Luan B, Koprivnikar K, Huan Tu G, Prell R, VanRoey MJ, Simmons AD, Jooss K (2006) Vascular endothelial growth factor blockade reduces intratumoral regulatory t cells and enhances the efficacy of a GM-CSF-secreting cancer immunotherapy. Clin Cancer Res 12:6808–6816

    Article  PubMed  CAS  Google Scholar 

  25. Prell RA, Li B, Lin JM, VanRoey M, Jooss K (2005) Administration of IFN-alpha enhances the efficacy of a granulocyte macrophage colony stimulating factor-secreting tumor cell vaccine. Cancer Res 65:2449–2456

    Article  PubMed  CAS  Google Scholar 

  26. Prell RA, Gearin L, Simmons A, Vanroey M, Jooss K (2006) The anti-tumor efficacy of a GM-CSF-secreting tumor cell vaccine is not inhibited by docetaxel administration. Expert Rev Vaccines 55:1–9

    Google Scholar 

  27. Simons JW, Jaffee EM, Weber CE, Levitsky HI, Nelson WG, Carducci MA, Lazenby AJ, Cohen LK, Finn CC, Clift SM, Hauda KM, Beck LA, Leiferman KM, Owens AH Jr, Piantadosi S, Dranoff G, Mulligan RC, Pardoll DM, Marshall FF (1997) Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene transfer. Cancer Res 57:1537–1546

    PubMed  CAS  Google Scholar 

  28. Salgia R, Lynch T, Skarin A, Lucca J, Lynch C, Jung K, Hodi FS, Jaklitsch M, Mentzer S, Swanson S, Lukanich J, Bueno R, Wain J, Mathisen D, Wright C, Fidias P, Donahue D, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Sugarbaker D, Mihm M, Dranoff G (2003) Vaccination with irradiated autologous tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor augments antitumor immunity in some patients with metastatic non-small-cell lung carcinoma. J Clin Oncol 21:624–630

    Article  PubMed  Google Scholar 

  29. Chang AE, Li Q, Bishop DK, Normolle DP, Redman BD, Nickoloff BJ (2000) Immunogenetic therapy of human melanoma utilizing autologous tumor cells transduced to secrete granulocyte-macrophage colony-stimulating factor. Hum Gene Ther 11:839–850

    Article  PubMed  CAS  Google Scholar 

  30. Randolph GJ, Angeli V, Swartz MA (2005) Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5:617–628

    Article  PubMed  CAS  Google Scholar 

  31. Douillard P, Stoitzner P, Tripp CH, Clair-Moninot V, Ait-Yahia S, McLellan AD, Eggert A, Romani N, Saeland S (2005) Mouse lymphoid tissue contains distinct subsets of langerin/CD207 dendritic cells, only one of which represents epidermal-derived Langerhans cells. J Invest Dermatol 125:983–994

    Article  PubMed  CAS  Google Scholar 

  32. Khong HT, Restifo NP (2002) Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 3:999–1005

    Article  PubMed  CAS  Google Scholar 

  33. Leitch J, Fraser K, Lane C, Putzu K, Adema GJ, Zhang QJ, Jefferies WA, Bramson JL, Wan Y (2004) CTL-dependent and -independent antitumor immunity is determined by the tumor not the vaccine. J Immunol 172:5200–5205

    PubMed  CAS  Google Scholar 

  34. Soiffer R, Lynch T, Mihm M, Jung K, Rhuda C, Schmollinger JC, Hodi FS, Liebster L, Lam P, Mentzer S, Singer S, Tanabe KK, Cosimi AB, Duda R, Sober A, Bhan A, Daley J, Neuberg D, Parry G, Rokovich J, Richards L, Drayer J, Berns A, Clift S, Cohen LK, Mulligan RC, Dranoff G (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 95:13141–13146

    Article  PubMed  CAS  Google Scholar 

  35. Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S, Tanabe K, Duda R, Mentzer S, Jaklitsch M, Bueno R, Clift S, Hardy S, Neuberg D, Mulligan R, Webb I, Mihm M, Dranoff G (2003) Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocyte-macrophage colony-stimulating factor by adenoviral-mediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 21:3343–3350

    Article  PubMed  CAS  Google Scholar 

  36. Nemunaitis J, Jahan T, Ross H, Sterman D, Richards D, Fox B, Jablons D, Aimi J, Lin A, Hege K (2006) Phase 1/2 trial of autologous tumor mixed with an allogeneic GVAX((R)) vaccine in advanced-stage non-small-cell lung cancer. Cancer Gene Ther 13:555–562

    Article  PubMed  CAS  Google Scholar 

  37. Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I (2004) High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64:6337–6343

    Article  PubMed  CAS  Google Scholar 

  38. Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee EM, Manns MP, Greten TF (2003) Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer 103:205–211

    Article  PubMed  CAS  Google Scholar 

  39. Magner WJ, Tomasi TB (2005) Apoptotic and necrotic cells induced by different agents vary in their expression of MHC and costimulatory genes. Mol Immunol 42:1033–1042

    Article  PubMed  CAS  Google Scholar 

  40. Kotera Y, Shimizu K, Mule JJ (2001) Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res 61:8105–8109

    PubMed  CAS  Google Scholar 

  41. Restifo NP (2000) Building better vaccines: how apoptotic cell death can induce inflammation and activate innate and adaptive immunity. Curr Opin Immunol 12:597–603

    Article  PubMed  CAS  Google Scholar 

  42. Hung K, Hayashi R, Lafond-Walker A, Lowenstein C, Pardoll D, Levitsky H (1998) The central role of CD4(+) T cells in the antitumor immune response. J Exp Med 188:2357–2368

    Article  PubMed  CAS  Google Scholar 

  43. Simon HU (2003) Neutrophil apoptosis pathways and their modifications in inflammation. Immunol Rev 193:101–110

    Article  PubMed  CAS  Google Scholar 

  44. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A (1992) Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80:2012–2020

    PubMed  CAS  Google Scholar 

  45. Brach MA, deVos S, Gruss HJ, Herrmann F (1992) Prolongation of survival of human polymorphonuclear neutrophils by granulocyte-macrophage colony-stimulating factor is caused by inhibition of programmed cell death. Blood 80:2920–2924

    PubMed  CAS  Google Scholar 

  46. van Gisbergen KP, Geijtenbeek TB, van Kooyk Y (2005) Close encounters of neutrophils and DCs. Trends Immunol 26:626–631

    Article  PubMed  CAS  Google Scholar 

  47. Jaffee EM, Thomas MC, Huang AY, Hauda KM, Levitsky HI, Pardoll DM (1996) Enhanced immune priming with spatial distribution of paracrine cytokine vaccines. J Immunother Emphasis Tumor Immunol 19:176–183

    PubMed  CAS  Google Scholar 

  48. Thomas AM, Santarsiero LM, Lutz ER, Armstrong TD, Chen YC, Huang LQ, Laheru DA, Goggins M, Hruban RH, Jaffee EM (2004) Mesothelin-specific CD8(+) T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients. J Exp Med 200:297–306

    Article  PubMed  CAS  Google Scholar 

  49. Ahmad M, Rees RC, Ali SA (2004) Escape from immunotherapy: possible mechanisms that influence tumor regression/progression. Cancer Immunol Immunother 53:844–854

    Article  PubMed  Google Scholar 

  50. Miller AM, Pisa P (2005) Tumor escape mechanisms in prostate cancer. Cancer Immunol Immunother 56:1–7

    Google Scholar 

  51. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002) Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 99:16168–16173

    Article  PubMed  CAS  Google Scholar 

  52. Zhou X, Jun do Y, Thomas AM, Huang X, Huang LQ, Mautner J, Mo W, Robbins PF, Pardoll DM, Jaffee EM (2005) Diverse CD8+ T-cell responses to renal cell carcinoma antigens in patients treated with an autologous granulocyte-macrophage colony-stimulating factor gene-transduced renal tumor cell vaccine. Cancer Res 65:1079–1088

    PubMed  CAS  Google Scholar 

  53. Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54:721–728

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank T. Harding and P. Working for critical reading of the manuscript, and R. Prell for helpful discussions. B. Batiste, J. Ho, T. Langer, and S. Tanciongo are gratefully acknowledged for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Simmons.

Electronic supplementary material

Below is the link to the electronic supplementary material.

262_2007_315_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simmons, A.D., Li, B., Gonzalez-Edick, M. et al. GM-CSF-secreting cancer immunotherapies: preclinical analysis of the mechanism of action. Cancer Immunol Immunother 56, 1653–1665 (2007). https://doi.org/10.1007/s00262-007-0315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0315-2

Keywords

Navigation