Skip to main content

Advertisement

Log in

Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Single administration of low dose cyclophosphamide (CTX) was previously reported to enhance the antitumor efficacy of immunotherapies. To investigate the possible mechanisms for this effect, we examined whether a single administration of low dose CTX could augment the immunogenicity of dendritic cell (DC) vaccines. Fifty milligrams per kilogram body weight dose of CTX was administrated intraperitoneally to mice after B16 melanoma or C26 colon carcinoma tumor models were established, DC vaccine generated from mouse bone marrow and pulsed with B16 or C26 tumor cells lysates were vaccinated 4 days later. CTX treatment potentiated the antitumor effects of the DC vaccine, and increased the proportion of IFN-γ secreting lymphocytes in spleens. Furthermore, a significantly reduced proportion of CD4+CD25+FoxP3+ regulatory T (Treg) cells was detected by flow cytometry in spleen lymphocytes from tumor-bearing mice treated with CTX. Thus, a single administration of low dose CTX could augment antitumor immune responses of DC vaccine by reducing the proportion of CD4+CD25+FoxP3+ Treg cells in tumor-bearing mice. Our results suggested a possible mechanism of CTX-induced immunopotentiation and provided a strategy of immunotherapy combining a low dose CTX with DC vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Steinman RM, Pope M (2002) Exploiting dendritic cells to improve vaccine efficacy. J Clin Invest 109:1519–1526

    Article  PubMed  CAS  Google Scholar 

  2. Chang AE, Redman BG, Whitfield JR, Nickoloff BJ, Braun TM, Lee PP, Geiger JD, Mule JJ (2002) A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin Cancer Res 8:1021–1032

    PubMed  CAS  Google Scholar 

  3. Gitlitz BJ, Belldegrun AS, Zisman A, Chao DH, Pantuck AJ, Hinkel A, Mulders P, Moldawer N, Tso CL, Figlin RA (2003) A pilot trial of tumor lysate-loaded dendritic cells for the treatment of metastatic renal cell carcinoma. J Immunother 26:412–419

    Article  PubMed  Google Scholar 

  4. Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, Brimnes MK, Moltedo B, Moran TM, Steinman RM (2004) In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 199:815–824

    Article  PubMed  CAS  Google Scholar 

  5. Hsu FJ, Komarovskaya M (2002) CTLA4 blockade maximizes antitumor T-cell activation by dendritic cells presenting idiotype protein or opsonized anti-CD20 antibody-coated lymphoma cells. J Immunother 25:455–468

    Article  PubMed  CAS  Google Scholar 

  6. Oldenhove G, de Heusch M, Urbain-Vansanten G, Urbain J, Maliszewski C, Leo O, Moser M (2003) CD4+ CD25+ regulatory T cells control T helper cell type 1 responses to foreign antigens induced by mature dendritic cells in vivo. J Exp Med 198:259–266

    Article  PubMed  CAS  Google Scholar 

  7. Gabrilovich DI, Ishida T, Nadaf S, Ohm JE, Carbone DP (1999) Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin Cancer Res 5:2963–2970

    PubMed  CAS  Google Scholar 

  8. Avigan D (2004) Dendritic cell-tumor fusion vaccines for renal cell carcinoma. Clin Cancer Res 10(18 Pt 2):6347S–6352S

    Article  PubMed  CAS  Google Scholar 

  9. Josien R, Li HL, Ingulli E, Sarma S, Wong BR, Vologodskaia M, Steinman RM, Choi Y (2000) TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J Exp Med 191:495–502

    Article  PubMed  CAS  Google Scholar 

  10. Okamoto M, Furuichi S, Nishioka Y, Oshikawa T, Tano T, Ahmed SU, Takeda K, Akira S, Ryoma Y, Moriya Y, Saito M, Sone S, Sato M (2004) Expression of toll-like receptor 4 on dendritic cells is significant for anticancer effect of dendritic cell-based immunotherapy in combination with an active component of OK-432, a streptococcal preparation. Cancer Res 64:5461–5470

    Article  PubMed  CAS  Google Scholar 

  11. Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    Article  PubMed  CAS  Google Scholar 

  12. Proietti E, Greco G, Garrone B, Baccarini S, Mauri C, Venditti M, Carlei D, Belardelli F (1998) Importance of cyclophosphamide-induced bystander effect on T cells for a successful tumor eradication in response to adoptive immunotherapy in mice. J Clin Invest 101:429–441

    Article  PubMed  CAS  Google Scholar 

  13. North RJ (1982) Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med 155:1063–1074

    Article  PubMed  CAS  Google Scholar 

  14. Mihalyo MA, Doody AD, McAleer JP, Nowak EC, Long M, Yang Y, Adler AJ (2004) In vivo cyclophosphamide and IL-2 treatment impedes self-antigen-induced effector CD4 cell tolerization: implications for adoptive immunotherapy. J Immunol 172:5338–5345

    PubMed  CAS  Google Scholar 

  15. Pelaez B, Campillo JA, Lopez-Asenjo JA, Subiza JL (2001) Cyclophosphamide induces the development of early myeloid cells suppressing tumor cell growth by a nitric oxide-dependent mechanism. J Immunol 166:6608–6615

    PubMed  CAS  Google Scholar 

  16. Berd D, Maguire HC Jr, Mastrangelo MJ (1986) Induction of cell-mediated immunity to autologous melanoma cells and regression of metastases after treatment with a melanoma cell vaccine preceded by cyclophosphamide. Cancer Res 46:2572–2577

    PubMed  CAS  Google Scholar 

  17. Schiavoni G, Mattei F, Di Pucchio T, Santini SM, Bracci L, Belardelli F, Proietti E (2000) Cyclophosphamide induces type I interferon and augments the number of CD44(hi) T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 95:2024–2030

    PubMed  CAS  Google Scholar 

  18. Matar P, Rozados VR, Gonzalez AD, Dlugovitzky DG, Bonfil RD, Scharovsky OG (2000) Mechanism of antimetastatic immunopotentiation by low-dose cyclophosphamide. Eur J Cancer 36:1060–1066

    Article  PubMed  CAS  Google Scholar 

  19. Matar P, Rozados VR, Gervasoni SI, Scharovsky GO (2002) Th2/Th1 switch induced by a single low dose of cyclophosphamide in a rat metastatic lymphoma model. Cancer Immunol Immunother 50:588–596

    Article  PubMed  CAS  Google Scholar 

  20. Tong Y, Song W, Crystal RG (2001) Combined intratumoral injection of bone marrow-derived dendritic cells and systemic chemotherapy to treat pre-existing murine tumors. Cancer Res 61:7530–7535

    PubMed  CAS  Google Scholar 

  21. Song W, Levy R (2005) Therapeutic vaccination against murine lymphoma by intratumoral injection of naive dendritic cells. Cancer Res 65:5958–5964

    Article  PubMed  CAS  Google Scholar 

  22. Holtl L, Ramoner R, Zelle-Rieser C, Gander H, Putz T, Papesh C, Nussbaumer W, Falkensammer C, Bartsch G, Thurnher M (2005) Allogeneic dendritic cell vaccination against metastatic renal cell carcinoma with or without cyclophosphamide. Cancer Immunol Immunother 54:663–670

    Article  PubMed  CAS  Google Scholar 

  23. Son YI, Egawa S, Tatsumi T, Redlinger RE Jr, Kalinski P, Kanto T (2002) A novel bulk-culture method for generating mature dendritic cells from mouse bone marrow cells. J Immunol Methods 262:145–157

    Article  PubMed  CAS  Google Scholar 

  24. Suto A, Nakajima H, Kagami SI, Suzuki K, Saito Y, Iwamoto I (2001) Role of CD4(+) CD25(+) regulatory T cells in T helper 2 cell-mediated allergic inflammation in the airways. Am J Respir Crit Care Med 164:680–687

    PubMed  CAS  Google Scholar 

  25. Schreurs MW, Eggert AA, de Boer AJ, Vissers JL, van Hall T, Offringa R, Figdor CG, Adema GJ (2000) Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res 60:6995–7001

    PubMed  CAS  Google Scholar 

  26. Li Y, Wang MN, Li H, King KD, Bassi R, Sun H, Santiago A, Hooper AT, Bohlen P, Hicklin DJ (2002) Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. J Exp Med 195:1575–1584

    Article  PubMed  CAS  Google Scholar 

  27. Gatza E, Okada CY (2002) Tumor cell lysate-pulsed dendritic cells are more effective than TCR Id protein vaccines for active immunotherapy of T cell lymphoma. J Immunol 169:5227–5235

    PubMed  Google Scholar 

  28. Fields RC, Shimizu K, Mule JJ (1998) Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci USA 95:9482–9487

    Article  PubMed  CAS  Google Scholar 

  29. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 155:1151–1164

    PubMed  CAS  Google Scholar 

  30. Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H (2005) Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 105:2862–2868

    Article  PubMed  CAS  Google Scholar 

  31. Fontenot JD, Gavin MA, Rudensky AY. (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4:330–336

    Article  PubMed  CAS  Google Scholar 

  32. Brode S, Raine T, Zaccone P, Cooke A. (2006) Cyclophosphamide-induced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+CD25+Foxp3+ regulatory T cells. J Immunol 177:6603–6612

    PubMed  CAS  Google Scholar 

  33. Cederbom L, Hall H, Ivars F (2000) CD4+CD25+ regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol 30:1538–1543

    Article  PubMed  CAS  Google Scholar 

  34. Misra N, Bayry J, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV (2004) Cutting edge: human CD4+CD25+ T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol 172:4676–4680

    PubMed  CAS  Google Scholar 

  35. Godfrey WR, Ge YG, Spoden DJ, Levine BL, June CH, Blazar BR, Porter SB (2004) In vitro-expanded human CD4(+)CD25(+) T-regulatory cells can markedly inhibit allogeneic dendritic cell-stimulated MLR cultures. Blood 104:453–461

    Article  PubMed  CAS  Google Scholar 

  36. Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188:287–296

    Article  PubMed  CAS  Google Scholar 

  37. Piccirillo CA, Shevach EM (2001) Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 167:1137–1140

    PubMed  CAS  Google Scholar 

  38. Larmonier N, Marron M, Zeng Y, Cantrell J, Romanoski A, Sepassi M, Thompson S, Chen X, Andreansky S, Katsanis E. (2007) Tumor-derived CD4(+)CD25(+) regulatory T cell suppression of dendritic cell function involves TGF-beta and IL-10. Cancer Immunol Immunother 56:48–59

    Article  PubMed  CAS  Google Scholar 

  39. Prasad SJ, Farrand KJ, Matthews SA, Chang JH, McHugh RS, Ronchese F (2005) Dendritic cells loaded with stressed tumor cells elicit long-lasting protective tumor immunity in mice depleted of CD4+CD25+ regulatory T cells. J Immunol 174:90–98

    PubMed  CAS  Google Scholar 

  40. Berd D, Mastrangelo MJ (1987) Effect of low dose cyclophosphamide on the immune system of cancer patients: reduction of T-suppressor function without depletion of the CD8+ subset. Cancer Res 47:3317–3321

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by grants from the National Natural Science Foundation of China (30600550), the Natural Science Foundation of Guangdong Province (04300289; 05001693), the Scientific Research Foundation of Sichuan Province (07KJT-09) and the International Collaboration Foundation of the Ministry of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Xin Zeng.

Additional information

J.-Y. Liu and Y. Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, JY., Wu, Y., Zhang, XS. et al. Single administration of low dose cyclophosphamide augments the antitumor effect of dendritic cell vaccine. Cancer Immunol Immunother 56, 1597–1604 (2007). https://doi.org/10.1007/s00262-007-0305-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0305-4

Keywords

Navigation