Skip to main content

Advertisement

Log in

Tumor skewing of CD34+ cell differentiation from a dendritic cell pathway into endothelial cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Patients and animals bearing tumors have increased levels of CD34+ progenitor cells, which are capable of developing into dendritic cells. However, addition of medium conditioned by murine Lewis lung carcinoma cells increases the cellularity of the CD34+ cell cultures and redirects their differentiation into endothelial cells. The resulting cells resemble endothelial cells phenotypically as well as functionally by their capacity to reorganize into cord structures. Mechanisms by which tumors induced the increased cellularity and skewing toward endothelial cells were examined. Tumor-derived VEGF contributed to the increase in cellularity, but not to the redirection of differentiation. Differentiation into endothelial cells was blocked with sTie-2, suggesting tumor-derived angiopoietins in skewing differentiation. These studies show the capacity of tumors to skew progenitor cell development toward endothelial cells and define the mediators that contribute to endothelial cell development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Achen MG, Stacker SA (1998) The vascular endothelial growth factor family; proteins which guide the development of the vasculature. Int J Exp Pathol 79:255–265

    Article  PubMed  CAS  Google Scholar 

  2. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC (1997) The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med 185:111–120

    Article  PubMed  CAS  Google Scholar 

  3. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, Carbone DP, Gabrilovich DI (2001) Increased production of immature myeloid cells in cancer patients: A mechanism of immunosuppression in cancer. J Immunol 166:678–689

    PubMed  CAS  Google Scholar 

  4. Almand B, Resser JR, Lindman B, Nadaf S, Clark JI, Kwon ED, Carbone DP, Gabrilovich DI (2000) Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res 6:1755–1766

    PubMed  CAS  Google Scholar 

  5. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  PubMed  CAS  Google Scholar 

  6. Banich JC, Kolesiak K, Young MR (2003) Chemoattraction of CD34+ progenitor cells and dendritic cells to the site of tumor excision as the first step of an immunotherapeutic approach to target residual tumor cells. J Immunother 26:31–40

    Article  PubMed  CAS  Google Scholar 

  7. Beck LJ, D’Amore PA (1997) Vascular development: cellular and molecular regulation. FASEB J 11:365–373

    PubMed  CAS  Google Scholar 

  8. Dutt P, Wang JF, Groopman JE (1998) Stromal cell-derived factor-1 alpha and stem cell factor/kit ligand share signaling pathways in hemopoietic progenitors: a potential mechanism for cooperative induction of chemotaxis. J Immunol 161:3652–3658

    PubMed  CAS  Google Scholar 

  9. Feraud O, Cao Y, Vittet D (2001) Embryonic stem cell-derived embryoid bodies development in collagen gels recapitulates sprouting angiogenesis. Lab Invest 81:1669–1681

    PubMed  CAS  Google Scholar 

  10. Garrity T, Pandit R, Wright MA, Benefield J, Young MRI (1997) Increased presence of CD34+ cells in the peripheral blood of head and neck cancer patients and their differentiation into CD1a+ cells. Int J Cancer 73:663–669

    Article  PubMed  CAS  Google Scholar 

  11. Gupta RA, Tejada LV, Tong BJ, Das SK, Morrow JD, Dey SK, DuBois RN (2003) Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Res 63:906–911

    PubMed  CAS  Google Scholar 

  12. Hirashima M, Kataoka H, Nishikawa S, Matsuyoshi N (1999) Maturation of embryonic stem cells into endothelial cells in an in vitro model of vasculogenesis. Blood 93:1253–1263

    PubMed  CAS  Google Scholar 

  13. Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236

    Article  PubMed  CAS  Google Scholar 

  14. Kim CH, Broxmeyer HE (1998) In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood 91:100–110

    PubMed  CAS  Google Scholar 

  15. Koga K, Todaka T, Morioka M, Hamada J, Kai Y, Yano S, Okamura A, Takakura N, Suda T, Ushio Y (2001) Expression of angiopoietin-2 in human glioma cells and its role for angiogenesis. Cancer Res 61:6248–6254

    PubMed  CAS  Google Scholar 

  16. Lathers DM, Achille N, Young MR (2003) Dendritic cell development from mobilized peripheral blood CD34+ cells. Methods Mol Biol 215:409–415

    PubMed  Google Scholar 

  17. Lathers DMR, Achille N, Kolesiak K, Hulett K, Sparano A, Young MRI (2001) Increased levels of immune inhibitory CD34+ progenitor cells in the peripheral blood of patients with node positive head and neck cancer and the ability of the CD34+ cells to differentiate into antigen presenting dendritic cells. Clin Cancer Res 125:205–212

    CAS  Google Scholar 

  18. Lathers DMR, Lubbers E, Wright MA, Young MRI (1999) Dendritic cell differentiation pathways of CD34+ cells from the peripheral blood of head and neck cancer patients. J Leukoc Biol 65:623–628

    PubMed  CAS  Google Scholar 

  19. Melani C, Stoppacciaro A, Foroni C, Felicetti F, Care A, Colombo MP (2004) Angiopoietin decoy secreted at tumor site impairs tumor growth and metastases by inducing local inflammation and altering neoangiogenesis. Cancer Immunol Immunother 53:600–608

    Article  PubMed  CAS  Google Scholar 

  20. Schofield KP, Rushton G, Humphries MJ, Dexter TM, Gallagher JT (1997) Influence of interleukin-3 and other growth factors on α4β1 integrin-mediated adhesion and migration of human hematopoietic progenitor cells. Blood 90:1858–1866

    PubMed  CAS  Google Scholar 

  21. Schuch G, Heymach JV, Nomi M, Machluf M, Force J, Atala A, Eder JP Jr, Folkman J, Soker S (2003) Endostatin inhibits the vascular endothelial growth factor-induced mobilization of endothelial progenitor cells. Cancer Res 63:8345–8350

    PubMed  CAS  Google Scholar 

  22. Shirakawa K, Furuhata S, Watanabe I, Hayase H, Shimizu A, Ikarashi Y, Yoshida T, Terada M, Hashimoto D, Wakasugi H (2002) Induction of vasculogenesis in breast cancer models. Br J Cancer 87:1454–1461

    Article  PubMed  CAS  Google Scholar 

  23. Springer ML, Chen AS, Kraft PE, Bednarski M, Blau HM (1998) VEGF gene delivery to muscle: potential role for vasculogenesis in adults. Mol Cell 2:549–558

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438

    Article  PubMed  CAS  Google Scholar 

  25. Tanaka F, Ishikawa S, Yanagihara K, Miyahara R, Kawano Y, Li M, Otake Y, Wada H (2002) Expression of angiopoietins and its clinical significance in non-small cell lung cancer. Cancer Res 62:7124–7129

    PubMed  CAS  Google Scholar 

  26. Tsuda S, Ohtsuru A, Yamashita S, Kanetake H, Kanda S (2002) Role of c-Fyn in FGF-2-mediated tube-like structure formation by murine brain capillary endothelial cells. Biochem Biophys Res Commun 290:1354–1360

    Article  PubMed  CAS  Google Scholar 

  27. Vinals F, Pouyssegur J (2001) Transforming growth factor β1 (TGF-β1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-α signaling. Mol Cell Biol 21:7218–7230

    Article  PubMed  CAS  Google Scholar 

  28. Young MR (2004) Tumor skewing of CD34+ progenitor cell differentiation into endothelial cells. Int J Cancer 109:516–524

    Article  PubMed  CAS  Google Scholar 

  29. Young MR, Kolesiak K, Wright MA, Gabrilovich DI (1999) Chemoattraction of femoral CD34+ progenitor cells by tumor-derived vascular endothelial cell growth factor. Clin Exp Metastasis 17:881–888

    Article  PubMed  CAS  Google Scholar 

  30. Young MR, Wright MA, Lathers DM, Messingham KA (1999) Increased resistance to apoptosis by bone marrow CD34+ progenitor cells from tumor-bearing mice. Int J Cancer 82:609–615

    Article  PubMed  CAS  Google Scholar 

  31. Young MR, Young ME, Kim K (1988) Regulation of tumor-induced myelopoiesis and the associated immune suppressor cells in mice bearing metastatic Lewis lung carcinomas by prostaglandin E2. Cancer Res 48:6826–6831

    PubMed  CAS  Google Scholar 

  32. Young MRI, Halpin J, Wang J, Wright MA, Matthews J, Schmidt-Pak A (1993) 1α,25-dihydroxyvitamin D3 plus γ-interferon blocks lung tumor production of granulocyte-macrophage colony-stimulating factor and induction of immunosuppressor cells. Cancer Res 53:6006–6010

    PubMed  CAS  Google Scholar 

  33. Young MRI, Petruzzelli G, Kolesiak K, Lathers DMR, Lingen MW, Gabrilovich D (2001) Human squamous cell carcinomas of the head and neck chemoattract immune suppressive CD34+ progenitor cells. Hum Immunol 62:332–341

    Article  PubMed  CAS  Google Scholar 

  34. Young MRI, Schmidt-Pak A, Wright MA, Matthews JP, Collins SL, Petruzzelli G (1995) Mechanisms of immune suppression in patients with head and neck cancer: Presence of immune suppressive CD34+ cells in cancers that secrete granulocyte-macrophage colony-stimulating factor. Clin Cancer Res 1:95–103

    PubMed  Google Scholar 

  35. Young MRI, Wright MA (1992) Myelopoiesis-associated immune suppressor cells in mice bearing metastatic Lewis lung carcinoma tumors: interferon-γ plus tumor necrosis factor-α synergistically reduce immune suppressor and tumor growth-promoting activities of bone marrow cells, and diminish tumor recurrence and metastasis. Cancer Res 52:6335–6340

    PubMed  CAS  Google Scholar 

  36. Young MRI, Wright MA, Lozano Y, Matthews JP, Benefield J, Prechel MM (1996) Mechanisms of immune suppression in patients with head and neck cancer: influence on the immune infiltrate of the cancer. Int J Cancer 67:333–338

    Article  PubMed  CAS  Google Scholar 

  37. Young MRI, Wright MA, Lozano Y, Prechel MM, Benefield J, Leonetti JP, Collins SL, Petruzzelli GJ (1997) Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34+ natural suppressor cells. Int J Cancer 74:69–74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Service of the Department of Veterans Affairs, and by grants CA97813 and CA85266 from the National Institutes of Health (MRIY).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Rita I. Young.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, M.R.I., Cigal, M. Tumor skewing of CD34+ cell differentiation from a dendritic cell pathway into endothelial cells. Cancer Immunol Immunother 55, 558–568 (2006). https://doi.org/10.1007/s00262-005-0036-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0036-3

Keywords

Navigation