Skip to main content

Advertisement

Log in

Importance of signaling via the IFN-α/β receptor on host cells for the realization of the therapeutic benefits of cyclophosphamide for mice bearing a large MOPC-315 tumor

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Here we show that low-dose cyclophosphamide (CY), that depends for its therapeutic effectiveness on the immunopotentiating activity of the drug for T cell-mediated tumor-eradicating immunity, is curative for ~80% of wild-type (WT) mice bearing a large s.c. MOPC-315 tumor, but only for ~10% of IFN-α/βR−/− mice bearing a large s.c. MOPC-315 tumor. Histopathological examination of the s.c. tumors of such mice on day 4 after the chemotherapy revealed that the low dose of CY led to accumulation of T lymphocytes in both the WT and the IFN-α/βR−/− mice. However, in the CY treated tumor bearing WT mice the T lymphocytes were present throughout the tumor mass and in direct contact with tumor cells, but in the CY treated tumor bearing IFN-α/βR−/− mice most of the T lymphocytes remained in blood vessels. In addition to being important for CY-induced transendothelial migration of T lymphocytes into the tumor mass, we show here that signaling via the IFN-α/βR is also important for CY-induced control of metastatic tumor progression in the spleen and liver of the tumor bearing mice. Finally, CY cured tumor bearing WT mice were resistant to a subsequent challenge with MOPC-315 tumor cells, but the few CY cured tumor bearing IFN-α/βR−/− mice were not. Thus, signaling via the IFN-α/βR on host cells in MOPC-315 tumor bearers is important for CY-induced: (a) transendothelial migration of T lymphocytes into the tumor mass and the eradication of the primary tumor, (b) control of metastatic tumor progression, and (c) resistance to a subsequent tumor challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

CY:

Cyclophosphamide

WT mice:

Wild-type mice

I-TAC:

Interferon-inducible T cell alpha chemoattractant

References

  1. Awwad M, North RJ (1989) Cyclophosphamide-induced immunologically mediated regression of a cyclophosphamide-resistant murine tumor: a consequence of eliminating precursor L3T4+ suppressor T-cells. Cancer Res 49:1649

    PubMed  CAS  Google Scholar 

  2. Bass KK, Mastrangelo MJ (1998) Immunopotentiation with low-dose cyclophosphamide in the active specific immunotherapy of cancer. Cancer Immunol Immunother 47:1

    Article  PubMed  CAS  Google Scholar 

  3. Belardelli F, Ferrantini M, Santini SM, Baccarini S, Proietti E, Colombo MP, Sprent J, Tough DF (1998) The induction of in vivo proliferation of long-lived CD44hi CD8+ T cells after the injection of tumor cells expressing IFN-alpha1 into syngeneic mice. Cancer Res 58:5795

    PubMed  CAS  Google Scholar 

  4. Berd D, Mastrangelo MJ (1988) Active immunotherapy of human melanoma exploiting the immunopotentiating effects of cyclophosphamide. Cancer Invest 6:337

    Article  PubMed  CAS  Google Scholar 

  5. Chawla-Sarkar M, Leaman DW, Borden EC (2001) Preferential induction of apoptosis by interferon (IFN)-beta compared with IFN-alpha2: correlation with TRAIL/Apo2L induction in melanoma cell lines. Clin Cancer Res 7:1821

    PubMed  CAS  Google Scholar 

  6. Cole KE, Strick CA, Paradis TJ, Ogborne KT, Loetscher M, Gladue RP, Lin W, Boyd JG, Moser B, Wood DE, Sahagan BG, Neote K (1998) Interferon-inducible T cell alpha chemoattractant (I-TAC): a novel non-ELR CXC chemokine with potent activity on activated T cells through selective high affinity binding to CXCR3. J Exp Med 187:2009

    Article  PubMed  CAS  Google Scholar 

  7. Deonarain R, Verma A, Porter AC, Gewert DR, Platanias LC, Fish EN (2003) Critical roles for IFN-beta in lymphoid development, myelopoiesis, and tumor development: links to tumor necrosis factor alpha. Proc Natl Acad Sci USA 100:13453

    Article  PubMed  CAS  Google Scholar 

  8. Donepudi M, Raychaudhuri P, Bluestone JA, Mokyr MB (2001) Mechanism of melphalan-induced B7-1 gene expression in P815 tumor cells. J Immunol 166:6491

    PubMed  CAS  Google Scholar 

  9. Gehring S, Gregory SH, Kuzushita N, Wands JR (2005) Type 1 interferon augments DNA-based vaccination against hepatitis C virus core protein. J Med Virol 75:249

    Article  PubMed  CAS  Google Scholar 

  10. Giandomenico V, Vaccari G, Fiorucci G, Percario Z, Vannuchi S, Matarrese P, Malorni W, Romeo G, Affabris GR (1998) Apoptosis and growth inhibition of squamous carcinoma cells treated with interferon-alpha, IFN-beta and retinoic acid are associated with induction of the cyclin-dependent kinase inhibitor p21. Eur Cytokine Netw 9:619

    PubMed  CAS  Google Scholar 

  11. Gorelik L, Mokyr MB (1995) Low-dose-melphalan-induced up-regulation of type-1 cytokine expression in the s.c. tumor nodule of MOPC-315 tumor bearers and the role of interferon gamma in the therapeutic outcome. Cancer Immunol Immunother 41:363

    Article  PubMed  CAS  Google Scholar 

  12. Gorelik L, Prokhorova A, Mokyr MB (1994) Low-dose melphalan-induced shift in the production of a Th2-type cytokine to a Th1-type cytokine in mice bearing a large MOPC-315 tumor. Cancer Immunol Immunother 39:117

    Article  PubMed  CAS  Google Scholar 

  13. Hengst JC, Mokyr MB, Dray S (1980) Importance of timing in cyclophosphamide therapy of MOPC-315 tumor-bearing mice. Cancer Res 40:2135

    PubMed  CAS  Google Scholar 

  14. Hengst JC, Mokyr MB, Dray S (1981) Cooperation between cyclophosphamide tumoricidal activity and host antitumor immunity in the cure of mice bearing large MOPC-315 tumors. Cancer Res 41:2163

    PubMed  CAS  Google Scholar 

  15. Hiroishi K, Tuting T, Lotze MT (2000) IFN-alpha-expressing tumor cells enhance generation and promote survival of tumor-specific CTLs. J Immunol 164:567

    PubMed  CAS  Google Scholar 

  16. Inagawa H, Nishizawa T, Honda T, Nakamoto T, Takagi K, Soma G (1998) Mechanisms by which chemotherapeutic agents augment the antitumor effects of tumor necrosis factor: involvement of the pattern shift of cytokines from Th2 to Th1 in tumor lesions. Anticancer Res 18:3957

    PubMed  CAS  Google Scholar 

  17. Johns TG, Mackay IR, Callister KA, Hertzog PJ, Devenish RJ, Linnane AW (1992) Antiproliferative potencies of interferons on melanoma cell lines and xenografts: higher efficacy of interferon beta. J Natl Cancer Inst 84:1185

    Article  PubMed  CAS  Google Scholar 

  18. Jovasevic VM, Mokyr MB (2001) Melphalan-induced expression of IFN-beta in MOPC-315 tumor-bearing mice and its importance for the up-regulation of TNF-alpha expression. J Immunol 167:4895

    PubMed  CAS  Google Scholar 

  19. Lattime EC, Mastrangelo MJ, Bagasra O, Li W, Berd D (1995) Expression of cytokine mRNA in human melanoma tissues. Cancer Immunol Immunother 41:151

    Article  PubMed  CAS  Google Scholar 

  20. Le Bon A, Schiavoni G, D’Agostino G, Gresser I, Belardelli F, Tough DF (2001) Type I interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo. Immunity 14:461

    Article  PubMed  CAS  Google Scholar 

  21. Leib DA, Machalek MA, Williams BR, Silverman RH, Virgin HW (2000) Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci USA 97:6097

    Article  PubMed  CAS  Google Scholar 

  22. Marie I, Durbin JE, Levy DE (1998) Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J 17:6660

    Article  PubMed  CAS  Google Scholar 

  23. Matar P, Rozados VR, Gervasoni SI, Scharovsky GO (2002) Th2/Th1 switch induced by a single low dose of cyclophosphamide in a rat metastatic lymphoma model. Cancer Immunol Immunother 50:588

    Article  PubMed  CAS  Google Scholar 

  24. Matar P, Rozados VR, Gonzalez AD, Dlugovitzky DG, Bonfil RD, Scharovsky OG (2000) Mechanism of antimetastatic immunopotentiation by low-dose cyclophosphamide. Eur J Cancer 36:1060

    Article  PubMed  CAS  Google Scholar 

  25. Mattei F, Schiavoni G, Belardelli F, Tough DF (2001) IL-15 is expressed by dendritic cells in response to type I IFN, double-stranded RNA, or lipopolysaccharide and promotes dendritic cell activation. J Immunol 167:1179

    PubMed  CAS  Google Scholar 

  26. Mohan K, Ding Z, Hanly J, Issekutz TB (2002) IFN-gamma-inducible T cell alpha chemoattractant is a potent stimulator of normal human blood T lymphocyte transendothelial migration: differential regulation by IFN-gamma and TNF-alpha. J Immunol 168:6420

    PubMed  CAS  Google Scholar 

  27. Mokyr MB, Barker E, Weiskirch LM, Takesue BY, Pyle JM (1989) Importance of Lyt 2+ T-cells in the curative effectiveness of a low dose of melphalan for mice bearing a large MOPC-315 tumor. Cancer Res 49:4597

    PubMed  CAS  Google Scholar 

  28. Mokyr MB, Dray S (1983) Some advantages of curing mice bearing a large subcutaneous MOPC-315 tumor with a low dose rather than a high dose of cyclophosphamide. Cancer Res 43:3112

    PubMed  CAS  Google Scholar 

  29. Mokyr MB, Hengst JC, Dray S (1982) Role of antitumor immunity in cyclophosphamide-induced rejection of subcutaneous nonpalpable MOPC-315 tumors. Cancer Res 42:974

    PubMed  CAS  Google Scholar 

  30. Mokyr MB, Rubin M, Newell KA, Prokhorova A, Bluestone JA (1993) Involvement of TCR-V beta 8.3+ cells in the cure of mice bearing a large MOPC-315 tumor by low dose melphalan. J Immunol 151:4838

    PubMed  CAS  Google Scholar 

  31. Muller U, Steinhoff U, Reis LF, Hemmi S, Pavlovic J, Zinkernagel RM, Aguet M (1994) Functional role of type I and type II interferons in antiviral defense. Science 264:1918

    Article  PubMed  CAS  Google Scholar 

  32. Nagarkatti M, Toney DM, Nagarkatti PS (1989) Immunomodulation by various nitrosoureas and its effect on the survival of the murine host bearing a syngeneic tumor. Cancer Res 49:6587

    PubMed  CAS  Google Scholar 

  33. Rani MR, Foster GR, Leung S, Leaman D, Stark GR, Ransohoff RM (1996) Characterization of beta-R1, a gene that is selectively induced by interferon beta (IFN-beta) compared with IFN-alpha. J Biol Chem 271:22878

    Article  PubMed  CAS  Google Scholar 

  34. Rani MR, Gauzzi C, Pellegrini S, Fish EN, Wei T, Ransohoff RM (1999) Induction of beta-R1/I-TAC by interferon-beta requires catalytically active TYK2. J Biol Chem 274:1891

    Article  PubMed  CAS  Google Scholar 

  35. Rosenblum MG, Yung WK, Kelleher PJ, Ruzicka F, Steck PA, Borden EC (1990) Growth inhibitory effects of interferon-beta but not interferon-alpha on human glioma cells: correlation of receptor binding, 2′,5′-oligoadenylate synthetase and protein kinase activity. J Interferon Res 10:141

    PubMed  CAS  Google Scholar 

  36. Sahasrabudhe DM, deKernion JB, Pontes JE, Ryan DM, O’Donnell RW, Marquis DM, Mudholkar GS, McCune CS (1986) Specific immunotherapy with suppressor function inhibition for metastatic renal cell carcinoma. J Biol Response Modif 5:581

    CAS  Google Scholar 

  37. Schiavoni G, Mattei F, Di Pucchio T, Santini SM, Bracci L, Belardelli F, Proietti E (2000) Cyclophosphamide induces type I interferon and augments the number of CD44(hi) T lymphocytes in mice: implications for strategies of chemoimmunotherapy of cancer. Blood 95:2024

    PubMed  CAS  Google Scholar 

  38. Takesue BY, Pyle JM, Mokyr MB (1990) Importance of tumor-specific cytotoxic CD8+ T-cells in eradication of a large subcutaneous MOPC-315 tumor following low-dose melphalan therapy. Cancer Res 50:7641

    PubMed  CAS  Google Scholar 

  39. Taniguchi T, Takaoka A (2002) The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 14:111

    Article  PubMed  CAS  Google Scholar 

  40. Uze G, Lutfalla G, Mogensen KE (1995) Alpha and beta interferons and their receptor and their friends and relations. J Interferon Cytokine Res 15:3

    Article  PubMed  CAS  Google Scholar 

  41. Weiskirch LM, Bar-Dagan Y, Mokyr MB (1994) Transforming growth factor-beta-mediated down-regulation of antitumor cytotoxicity of spleen cells from MOPC-315 tumor-bearing mice engaged in tumor eradication following low-dose melphalan therapy. Cancer Immunol Immunother 38:215

    Article  PubMed  CAS  Google Scholar 

  42. Weiskirch LM, Baumgartel BA, Barker E, Mokyr MB (1991) Phorbol ester-induced enhancement in lytic activity of CD8+ splenic T cells from low-dose melphalan-treated MOPC-315-tumor bearers. Cancer Immunol Immunother 32:353

    Article  PubMed  CAS  Google Scholar 

  43. Yuan L, Kuramitsu Y, Li Y, Kobayashi M, Hosokawa M (1995) Restoration of interleukin-2 production in tumor-bearing rats through reducing tumor-derived transforming growth factor beta by treatment with bleomycin. Cancer Immunol Immunother 41:355

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margalit B. Mokyr.

Additional information

This work was supported by Research Grant 03-19 from the American Cancer Society-Illinois Division.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mokyr, M.B., Place, A.T., Artwohl, J.E. et al. Importance of signaling via the IFN-α/β receptor on host cells for the realization of the therapeutic benefits of cyclophosphamide for mice bearing a large MOPC-315 tumor. Cancer Immunol Immunother 55, 459–468 (2006). https://doi.org/10.1007/s00262-005-0029-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0029-2

Keywords

Navigation