Skip to main content

Advertisement

Log in

Structure and function of ETAA16: a novel cell surface antigen in Ewing’s tumours

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Immunoscreening of an Ewing’s family of tumour (EFT)-derived cDNA library using formerly described EFT-specific antibodies led to the isolation of a 3.5 kb cDNA, named Ewing’s tumour-associated antigen 16 (ETAA16). The ETAA16 cDNA shows no homology to any functionally characterised human gene. Only a bovine cDNA expressed in bovine testis and hepatocytes is functionally characterised as it encodes for a junction plaque associated protein and showed a homology of 69.9% at amino acid level to ETAA16. The human cDNA encodes for a 926 amino acid tumour antigen with a calculated molecular weight of 103 kDa. The epitope of the ETAA16-specific antibody, Ak16, covers the central region of the protein which is part of an extra cellular domain. The human ETAA16 gene locus has been assigned to chromosome 2p13-15 by FISH analyses and is confirmed by the human genome sequencing project. As demonstrated by flow cytometry, the cell surface expression of ETAA16 antigen is restricted to ET cell lines and not expressed on other small blue round cell tumours or other kind of tumour. RT-PCR analysis revealed a high expression of ETAA16 in brain, liver and kidney while lung and heart were negative. Immunohistochemistry showed an intracellular expression of ETAA16 in different kind of non-Ewing tumour tissues. These results suggest that ETAA16 may function as a tumour-specific cell surface antigen in EFTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DAB:

Diaminobenzidine

EFT:

Ewing’s family of tumours

ET:

Ewing’s tumour

ETAA16:

Ewing’s tumour-associated antigen 16

ETS:

E26 transformation specific

EST:

Expressed sequence tag

EWS:

Ewing’s sarcoma

FISH:

Fluorescence in situ hybridisation

FLI-1:

Friend leukemia integration site-1

MAB:

Monoclonal antibody

MFI:

Mean fluorescence intensity

ORF:

Open reading frame

PALS:

Periarteriolar lymphoid sheath

PNET:

Primitive neuroectodermal tumour

UTR:

Untranslated region

References

  1. Ambros IM, Ambros PF, Strehl S, Kovar H, Gadner H, Salzer-Kuntschik M (1991) MIC2 is a specific marker for Ewing’s sarcoma and peripheral primitive neuroectodermal tumors. Evidence for a common histogenesis of Ewing’s sarcoma and peripheral primitive neuroectodermal tumors from MIC2 expression and specific chromosome aberration. Cancer 67:1886

    Article  PubMed  CAS  Google Scholar 

  2. Arvand A, Bastians H, Welford SM, Thompson AD, Ruderman JV, Denny CT (1998) EWS/FLI1 up regulates mE2-C, a cyclin-selective ubiquitin conjugating enzyme involved in cyclin B destruction. Oncogene 17:2039

    Article  PubMed  CAS  Google Scholar 

  3. Arvand A, Denny CT (2001) Biology of EWS/ETS fusions in Ewing’s family tumors. Oncogene 20:5747

    Article  PubMed  CAS  Google Scholar 

  4. Borowski A, van Valen F, et al. (1999) Monomorphic HLA class I-(non-A, non-B) expression on Ewing’s tumor cell lines, modulation by TNF-α and IFN-γ. Immunobiology 200:1

    PubMed  CAS  Google Scholar 

  5. Braun BS, Frieden R, Lessnick SL, May WA, Denny CT (1995) Identification of target genes for the Ewing’s sarcoma EWS/FLI fusion protein by representational difference analysis. Mol Cell Biol 15:4623

    PubMed  CAS  Google Scholar 

  6. Cavazzana AO, Miser JS, Jefferson J, Triche TJ (1987) Experimental evidence for a neural origin of Ewing’s sarcoma of bone. Am J Pathol 127:507

    PubMed  CAS  Google Scholar 

  7. Chomzynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156

    Article  PubMed  Google Scholar 

  8. Dixkens C, Posseckert G, Keller T, Hameister H (1998) Structural analysis of the amplified IFN-beta and DHFR genes in a Chinese hamster ovary cell line using multicolour FISH analysis. Chromosome Res 6:329

    Article  PubMed  CAS  Google Scholar 

  9. Franchi A, Pasquinelli G, et al. (2001) Immunohistochemical and ultrastructural investigation of neural differentiation in Ewing sarcoma/PNET of bone and soft tissues. Ultrastruct Pathol 25:219

    Article  PubMed  CAS  Google Scholar 

  10. Granowetter L (1995) Ewing’s sarcoma and extracranial peripheral neuroectodermal tumors. Curr Opin Oncol 7:355

    Article  PubMed  CAS  Google Scholar 

  11. Hahm KB, Cho K, et al. (1999) Repression of the gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 oncoprotein. Nat Genet 23:222

    Article  PubMed  CAS  Google Scholar 

  12. Jankowski J, Holst MI, Liebig C, Oberdick J, Baader SL (2004) Engrailed-2 negatively regulates the onset of perinatal Purkinje cell differentiation. J Comp Neurol 472:87

    Article  PubMed  CAS  Google Scholar 

  13. Jürgens HF (1994) Ewing’s sarcoma and peripheral primitive neuroectodermal tumor. Curr Opin Oncol 6:391

    Article  PubMed  Google Scholar 

  14. Kato K, Arai K, et al. (2000) Epithelioid leiomyosarcoma in a non-immunocompromised infant: additional differential diagnosis of pediatric “Round Cell Tumors”. Mod Pathol 13:1156

    Article  PubMed  CAS  Google Scholar 

  15. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283

    Article  PubMed  CAS  Google Scholar 

  16. Kozak M (1996) Interpreting cDNA sequences: some insights from studies on translation. Mamm Genome 7:563

    Article  PubMed  CAS  Google Scholar 

  17. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105

    Article  PubMed  CAS  Google Scholar 

  18. Lander ES, Linton LM et al. (2001) Initial sequencing and analysis of the human genome. Nature 409:860

    Article  PubMed  CAS  Google Scholar 

  19. Laws HJ, Burdach S, et al. (1999) Multimodality diagnostics and megatherapy in poor prognosis Ewing’s tumor patients. a single-center report. Strahlenther Onkol 175:488

    Article  PubMed  CAS  Google Scholar 

  20. May WA, Arvand A, Thompson AD, Braun BS, Wright M, Denny CT (1997) EWS/FLI1-induced manic fringe renders NIH 3T3 cells tumorigenic. Nat Genet 17:495

    Article  PubMed  CAS  Google Scholar 

  21. Melief CJ, Toes RE, Medema JP, van der Burg SH, Ossendorp F, Offringa R (2000) Strategies for immunotherapy of cancer. Adv Immunol 75:235

    Article  PubMed  CAS  Google Scholar 

  22. Pagani A, Fischer-Colbrie R, Eder U, Pellin A, Llombart-Bosch A, Bussolati G (1995) Neural and mesenchymal differentiations in Ewing’s sarcoma cell lines. Morphological, immunophenotypic, molecular biological and cytogenetic evidence. Int J Cancer 63:738

    Article  PubMed  CAS  Google Scholar 

  23. Paulussen M, Ahrens S, et al. (2001) Localized Ewing tumor of bone:final results of the cooperative Ewing’s Sarcoma Study CESS 86. J Clin Oncol 19:1818

    PubMed  CAS  Google Scholar 

  24. Remy P, Baltzinger M (2000) The Ets-transcription factor family in embryonic development: lessons from the amphibian and bird. Oncogene 19:6417

    Article  PubMed  CAS  Google Scholar 

  25. Ribas A, Butterfield LH, Glaspy JA, Economou JS (2003) Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol 21:2415

    Article  PubMed  CAS  Google Scholar 

  26. Sambrook J, Maniatis T, Fritsch EF (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory Press, New York

    Google Scholar 

  27. Schaefer KL, Wai DH, et al. (2002) Characterization of the malignant melanoma of soft-parts cell line GG-62 by expression analysis using DNA microarrays. Virchows Arch 440:476

    Article  PubMed  CAS  Google Scholar 

  28. Shi LR, Eichelbauer D, Borchard F, Jurgens H, Gobel U, Schneider EM (1994) Specificity and function of monoclonal antibodies directed against Ewing sarcoma cells. Cancer Immunol Immunother 38:208

    Article  PubMed  CAS  Google Scholar 

  29. Slaper-Cortenbach IC, Admiraal LG, Kerr JM, van Leeuwen EF, von dem Borne AE, Tetteroo PA (1988) Flow-cytometric detection of terminal deoxynucleotidyl transferase and other intracellular antigens in combination with membrane antigens in acute lymphatic leukemias. Blood 72:1639

    PubMed  CAS  Google Scholar 

  30. Spieker N, van Sluis P, et al. (2001) The MEIS1 oncogene is highly expressed in neuroblastoma and amplified in cell line IMR32. Genomics 71:214

    Article  PubMed  CAS  Google Scholar 

  31. Staege MS, Hutter C, et al. (2004) DNA Microarrays reveal relationship of ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res 64:8213

    Article  PubMed  CAS  Google Scholar 

  32. Stratakis CA, Taymans SE (1998) Structure of the gene coding for calcineurin B (PPP3R1) and mapping to D2S358-D2S1778 (chromosomal region 2p15). DNA Seq 9:227

    PubMed  CAS  Google Scholar 

  33. Urban JL, Schreiber H (1992) Tumor Antigens. Annu Rev Immunol 10:617

    Article  PubMed  CAS  Google Scholar 

  34. van Valen F (1999) Ewing’s sarcoma family of tumors. In: Masters JRW, Palsson B (eds), Human cell culture, vol. 1. Kluwer, Dordrecht pp 55–85

  35. Vlaeminck-Guillem V, Carrere S, Dewitte F, Stehelin D, Desbiens X, Duterque-Coquillaud M (2000) The Ets family member Erg gene is expressed in mesodermal tissues and neural crests at fundamental steps during mouse embryogenesis. Mech Dev 91:331

    Article  PubMed  CAS  Google Scholar 

  36. Watanabe G, Nishimori H, et al. (2003) Induction of tenascin-C by tumor-specific EWS-ETS fusion genes. Genes Chromosomes Cancer 36:224

    Article  PubMed  CAS  Google Scholar 

  37. Zwerner JP, May WA (2001) PDGF-C is an EWS/FLI induced transforming growth factor in Ewing family tumors. Oncogene 20:626

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft DI 747/3–1; Di747/3–2 and the Krebshilfe, Dr. Mildred Scheel Stiftung: 10–1859/Di, W26/94/Schn2 and the Elterninitiative Kinderkrebsklinik e.V. The authors thank Professor Horst Hameister, Department of Human Genetics, University of Ulm for performing the FISH analyses and his contribution in data analysis; stud. Biol. Stefanie Borkens Heinrich Heine University Düsseldorf for excellent technical assistance, Prof. Guido Reifenberger and Prof. Christopher Poremba, Institut for Pathology University Medical Center Düsseldorf for providing various cryopreserved tumour tissues. The authors also wish to thank Bettina Stahl (Anaesthesiology, Ulm) and Whilhelma Langmann (Department of Anatomy, Bonn) for their help with the immunohistochemical staining and also Dr. Kay Hofmann, Memorec, Cologne, Germany, for the bioinformatics analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Borowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borowski, A., Dirksen, U., Lixin, L. et al. Structure and function of ETAA16: a novel cell surface antigen in Ewing’s tumours. Cancer Immunol Immunother 55, 363–374 (2006). https://doi.org/10.1007/s00262-005-0017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0017-6

Keywords

Navigation