Skip to main content

Advertisement

Log in

MRI, clinical, and radiomic models for differentiation of uterine leiomyosarcoma and leiomyoma

  • Pelvis
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To assess the predictive ability of conventional MRI features and MRI texture features in differentiating uterine leiomyoma (LM) from uterine leiomyosarcoma (LMS).

Methods

This single-center, IRB-approved, HIPAA-compliant retrospective study included 108 patients (69 LM, 39 LMS) who had pathology, preoperative MRI, and clinical data available at our tertiary academic institution. Two radiologists independently evaluated 14 features on preoperative MRI. Texture features based on 3D segmentation were extracted from T2W-weighted MRI (T2WI) using commercially available texture software (TexRAD™, Feedback Medical Ltd., Great Britain). MRI conventional features, and clinical and MRI texture features were compared between LM and LMS groups. Dataset was randomly divided into training (86 cases) and testing (22 cases) cohorts (8:2 ratio); training cohort was further subdivided into training and validation sets using ten-fold cross-validation. Optimal radiomics model was selected out of 90 different machine learning pipelines and five models containing different combinations of MRI, clinical, and radiomics variables.

Results

12/14 MRI conventional features and 2/2 clinical features were significantly different between LM and LMS groups. MRI conventional features had moderate to excellent inter-reader agreement for all but two features. Models combining MRI conventional and clinical features (AUC 0.956) and MRI conventional, clinical, and radiomics features (AUC 0.989) had better performance compared to models containing MRI conventional features alone (AUC 0.846 and 0.890) or radiomics features alone (0.929).

Conclusion

While multiple MRI and clinical features differed between LM and LMS groups, the model combining MRI, clinical, and radiomic features had the best predictive ability but was only marginally better than a model utilizing conventional MRI and clinical data alone.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stewart EA, Cookson CL, Gandolfo RA, Schulze-Rath R. (2017) Epidemiology of uterine fibroids: a systematic review. BJOG. 124(10):1501-1512. https://doi.org/10.1111/1471-0528.14640

    Article  CAS  PubMed  Google Scholar 

  2. Lippman SA, Warner M, Samuels S, Olive D, Vercellini P, Eskenazi B (2003) Uterine fibroids and gynecologic pain symptoms in a population based study. Fertil Steril. 80(6): 1488-1494. https://doi.org/10.1016/s0015-0282(03)02207-6

    Article  PubMed  Google Scholar 

  3. D'Angelo E, Prat J (2010) Uterine sarcomas: A review. Gynecol Oncol 116(1):131-139. https://doi.org/10.1016/j.ygyno.2009.09.023

    Article  CAS  PubMed  Google Scholar 

  4. Gockley AA, Rauh-Hain A, del Carmen MG (2014) Uterine leiomyosarcoma: A Review Article. Int J Gynecol Cancer. 24(9):1538-1542. https://doi.org/10.1097/IGC.0000000000000290

    Article  PubMed  Google Scholar 

  5. Tanos V, Berry KE (2018) Benign and malignant pathology of the uterus. Clinic Obstet and Gynaecol. 46:12-30.

    CAS  Google Scholar 

  6. Aminzadeh P, Alibrahim E, Dobrotwir A, Paul E, Georgen S (2021) Multiparametric MR evaluation of uterine leiomyosarcoma and STUMP versus leiomyoma in symptomatic women planned for high frequency focussed ultrasound: accuracy of imaging parameters and interobserver agreement for identification of malignancy. Br J Radiol. 94(1119). https://doi.org/10.1259/bjr.20200483

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hindman N, Kang S, Fournier L, Lakhman Y, Nougaret S, Reinhold C, Sadowski E, Huang JQ, Ascher S (2023) MRI Evaluation of Uterine Masses for Risk of Leiomyosarcoma: A Consensus Statement. Radiol. 306(2). https://doi.org/10.1148/radiol.211658

    Article  Google Scholar 

  8. Wahab CA, Janno AS, Bonnaffini PA, Bourillon C, Cornou C, Lafrere-Belda MA, Bats AS, Thomassin-Naggara I, Belluci A, Reinhold C, Fournier L. (2020) Diagnostic Algorithm to Differentiate Benign Atypical Leiomyomas from Malignant Uterine Sarcomas with Diffusion-weighted MRI. Radiology. 297(2). https://doi.org/10.1148/radiol.2020191658

    Article  PubMed  Google Scholar 

  9. Jagannathan JP, Steiner A, Bay C, Eisenhauer E, Muto MG, George S, Fennessy FM (2021) Differentaiting leiomyosarcoma from leiomyoma: in support of an MR imaging predictive scoring system. Abdom Radiol. 46(10):4927-4935. https://doi.org/10.1007/s00261-021-03132-6

    Article  Google Scholar 

  10. Lin G, Yang LY, Huang YT, Ng KK, Ng SH, Ueng SH, Chao A, Yen TC, Chang TC, Lai CH (2015) Comparison of the diagnostic accuracy of contrast-enhanced MRI and diffusion-weighted MRI in the differentation between uterine leiomyosarcoma/smooth muscle tumor with uncertain malignant potential and benign leiomyoma. J Magn Reson Imaging. 43(2):333-342. https://doi.org/10.1002/jmri.24998

    Article  PubMed  Google Scholar 

  11. Lakhman Yulia, Veeraraghavan H, Chaim J, Feier D, Goldman DA, Moskowitz CS, Nougaret S, Sosa R. Vargas HA, Soslow RA, Abu-Rustum NR, Hricak H, Sala E (2017) Differentaition of Uterine Leiomyosarcoma from Atypical Leiomyoma: Diagnostic Accuracy of Qualitative MR IMaging Features and Feasibility of Texture Analysis. Eur Radiol. 27(7):2903-2915. https://doi.org/10.1007/s00330-016-4623-9

    Article  PubMed  Google Scholar 

  12. Sun A, Bonaffini PA, Nougaret S, Fournier L, Dohan A, Chong J, Smith J, Addley H, Reinhold C (2019) How to differentiate uterine leiomyosarcoma from leiomyoma with imaging. Diagnostic and Interventional Imaging. 100(10):619-634. https://doi.org/10.1016/j.diii.2019.07.007

    Article  CAS  PubMed  Google Scholar 

  13. Thomassin-Naggara I, Dechoux S, Bonneau C, Morel A, Rouzier R, Carette M, Darai E, Bazot M (2013) How to differentiate benign from malignant myometrial tumors using MR imaging. Radiol. 23(8):2306-2314. https://doi.org/10.1007/s00330-013-2819-9

    Article  Google Scholar 

  14. Vallières M, Freeman CR, Skamene SR, El Naqa I (2015) A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft tissue sarcomas of th extremities. Phys Med Biol. 60(14):5471-96. https://doi.org/10.1088/0031-9155/60/14/5471

    Article  PubMed  Google Scholar 

  15. Zhou H, Vallières M, Bai HX, Su C, Tang H, Oldridge D, Zhang Z, Xiao B, Liao W, Tao Y, Zhou J, Zhang P, Yang L. (2017) MRI features predict survival and molecular markers in diffuse lower-grade gliomas. Neuro Oncol, 19(6):862-870. https://doi.org/10.1093/neuonc/now256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Collewet G, Strzelecki M, Mariette F (2004) Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. Mgn Reson Imaging. 22(1):81-91. https://doi.org/10.1016/j.mri.2003.09.001

    Article  CAS  Google Scholar 

  17. Song Y, Zhang J, Zhang YD, Hou Y, Yan X, Wang Y, Zhou M, Yao YF, Yang G (2020) Feature Explorer (FAE): A tool for developing and comparing radiomics models. PLoS One. 15(8): e0237587. https://doi.org/10.1371/journal.pone.0237587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xie H, Hu J, Zhang X, Ma S, Liu Y, Wang X (2019) Preliminary utilization of radiomics in differentiating uterine sarcoma from atypical leiomyoma: Comparison on diagnostic efficacy of MRI features and radiomics features. European Journal of Radiology, 115: 39-45. https://doi.org/10.1016/j.ejrad.2019.04.004

    Article  PubMed  Google Scholar 

  19. Gerges L, Popiolek D, Rosenkrantz AB (2018) Explorative Investigation of Whole-Lesion Histogram MRI Metrics for Differentiating Uterine LEiomyomas and Leiomyosarcoma. American Journal of Roentgenology. 210(5):1172-1177. https://doi.org/10.2214/AJR.17.18605

    Article  PubMed  Google Scholar 

  20. Xie H, Zhang X, Ma S, Wang X (2019) Preoperative Differentiation of Uterine Sarcoma from Leiomyoma: Comparison of Three Models Based on Different Segmentation Volumes Using Radiomics. Mol Imaging Biol. 21(6):1157-1164. https://doi.org/10.1007/s11307-019-01332-7.

    Article  PubMed  Google Scholar 

  21. Kapp DS, Shin JY, Chan JK (2008) Prognostic factors and survival in 1396 patients with uterine leiomyosarcoma. Cancer. 112(4):820-830. https://doi.org/10.1002/cncr.23245

    Article  PubMed  Google Scholar 

  22. Brohl AS, Li L, Andikyan V, Obican SG, Cioffi A, Hao K, Dudley JT, Ascher-Walsh C, KAsarskis A, Maki RG (2015) AgeStratified Risk of Uterine Sarcoma Following Surgery for Presumed Benign Leiomyoma. Oncologist. 20(14):433-439. https://doi.org/10.1634/theoncologist.2014-0361

    Article  PubMed  PubMed Central  Google Scholar 

  23. Reginelli A, Nardone V, Giacobbe G, Belfiore MP, Grassi R, Schettino F, Del Canto M, Grassi R, Cappabianca S (2021) Radiomics as a New Frontier of Imaging for Cancer Prognosis: A Narrative Review. Daignostics (Basel). 11(10):1796. https://doi.org/10.3390/diagnostics11101796

    Article  CAS  Google Scholar 

  24. Sato K, Yuasa N, Fujita M, Fukushima Y (2014) Clinical application of diffusion-weighted imaging for preoperative differentiation between uterine leiomyoma and leiomyosarcoma. Am J obstet Gynecol. 210(4):e1-368. https://doi.org/10.1016/j.ajog.2013.12.028

    Article  Google Scholar 

  25. Tamai K, Koyama T, Saga T, Morisawa N, Fujimoto K, Mikami Y, Togashi K (2008) The utility of diffusion-weighted MR imaging for differentiating uterine sarcomas from benign leiomyomas. Eur Radiol. 18(4):723-730. https://doi.org/10.1007/s00330-007-0787-7

    Article  PubMed  Google Scholar 

  26. Guo E, Li C, Hu Y, Zhao K, Zheng Q, Wang L. Leiomyoma with Bizarre Nuclei: A Current Update. Int J Womens Health. 14:1641-1656. https://doi.org/10.2147/IJWH.S388278

    Article  PubMed  PubMed Central  Google Scholar 

  27. Yip S and Aerts H. (2016) Applications and limations of radiomics. Phys Med Biol. 61(13): R150-R166. https://doi.org/10.1088/0031-9155/61/13/R150

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funds, grants, or other support was received for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren A. Roller.

Ethics declarations

Competing interests

Atul B. Shinagare: Serves as a consultant for Virtualscopics and Imaging Endpoints. The other authors have no competing interests or funding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 747 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roller, L.A., Wan, Q., Liu, X. et al. MRI, clinical, and radiomic models for differentiation of uterine leiomyosarcoma and leiomyoma. Abdom Radiol (2024). https://doi.org/10.1007/s00261-024-04198-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00261-024-04198-8

Keywords

Navigation