Skip to main content
Log in

Photon-counting CT urogram: optimal acquisition potential (kV) determination for virtual noncontrast creation

  • Kidneys, Ureters, Bladder, Retroperitoneum
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To quantitatively and qualitatively compare the degree of iodine removal in the collecting system from PCCT urographic phase-derived virtual noncontrast (VNC) images obtained at 140 kV versus 120 kV.

Methods

A retrospective PACS search identified adult patients (>18 years) who underwent a PCCT urogram for hematuria from 4/2022 to 4/2023 with available urographic phase-derived VNC images in PACS. Tube voltage (120 kV, 140 kV), body mass index, CTDIvol, dose length product (DLP), and size-specific dose estimate (SSDE) were recorded. Hounsfield Unit (HU) in both renal pelvises and the urinary bladder on urographic-derived VNC were recorded. Three radiologists qualitatively assessed the degree of iodine removal (renal pelvis, urinary bladder) and diagnostic confidence for urinary stone detection. Continuous variables were compared for 140 kV versus 120 kV with the Wilcoxon rank sum test. A p < .05 indicated statistical significance.

Results

63 patients (34 male; median (Q1, Q3) age: 30 (26, 34) years; 140 kV/120 kV: 30 patients/33 patients) were included. BMI, CTDIvol, DLP, and SSDE were not different for 140 kV and 120 kV (all p > .05). Median (Q1, Q3) collecting system HU (renal pelvis and bladder) was 0.9 (− 3.6, 4.4) HU at 140 kV and 10.5 (3.6, 26.7) HU at 120 kV (p = .04). Diagnostic confidence for urinary calculi was 4.6 [1.1] at 140 kV and 4.1 [1.4] at 120 kV (p = .005). Diagnostic confidence was 5/5 (all readers) in 82.2% (74/90) at 140 kV and 59.6% (59/99) at 120 kV (p < .001).

Conclusion

PCCT urographic phase-derived VNC images obtained at 140 kV had better collecting system iodine removal than 120 kV with similar patient radiation exposure. With excellent PCCT urographic phase iodine removal at 140 kV, consideration can be made to utilize a single-phase CT urogram in young patients.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Available.

Code available

N/A.

References

  1. Rajendran K, Petersilka M, Henning A, Shanblatt ER, Schmidt B, Flohr TG, Ferrero A, Baffour F, Diehn FE, Yu L, Rajiah P, Fletcher JG, Leng S, McCollough CH (2022) First Clinical Photon-counting Detector CT System: Technical Evaluation. Radiology 2022;303(1):130-138. https://doi.org/10.1148/radiol.212579

    Article  PubMed  Google Scholar 

  2. Leng S, Bruesewitz M, Tao S, Rajendran K, Halaweish AF, Campeau NG, Fletcher JG, McCollough CH (2019). Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology. Radiographics;39(3):729-743. https://doi.org/10.1148/rg.2019180115

    Article  PubMed  Google Scholar 

  3. Leng S, Rajendran K, Gong H, Zhou W, Halaweish AF, Henning A, Kappler S, Baer M, Fletcher JG, McCollough CH (2018). 150-mum Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images. Invest Radiol;53(11):655-662. https://doi.org/10.1097/RLI.0000000000000488

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yu Z, Leng S, Kappler S, Hahn K, Li Z, Halaweish AF, Henning A, McCollough CH (2016). Noise performance of low-dose CT: comparison between an energy integrating detector and a photon counting detector using a whole-body research photon counting CT scanner. J Med Imaging (Bellingham);3(4):043503. https://doi.org/10.1117/1.JMI.3.4.043503

    Article  PubMed  Google Scholar 

  5. Walter SS, Schneeweiss S, Maurer M, Kraus MS, Wichmann JL, Bongers MN, Lescan M, Bamberg F, Othman AE (2018). Virtual non-enhanced dual-energy CT reconstruction may replace true non-enhanced CT scans in the setting of suspected active hemorrhage. Eur J Radiol;109:218-222. https://doi.org/10.1016/j.ejrad.2018.10.026

    Article  PubMed  Google Scholar 

  6. Mileto A, Mazziotti S, Gaeta M, Bottari A, Zimbaro F, Giardina C, Ascenti G (2012). Pancreatic dual-source dual-energy CT: is it time to discard unenhanced imaging? Clin Radiol;67(4):334-339. https://doi.org/10.1016/j.crad.2011.09.004

    Article  PubMed  Google Scholar 

  7. Thiravit S, Brunnquell C, Cai LM, Flemon M, Mileto A (2021). Use of dual-energy CT for renal mass assessment. Eur Radiol;31(6):3721-3733. https://doi.org/10.1007/s00330-020-07426-z

    Article  PubMed  Google Scholar 

  8. Sun H, Hou XY, Xue HD, Li XG, Jin ZY, Qian JM, Yu JC, Zhu HD (2015). Dual-source dual-energy CT angiography with virtual non-enhanced images and iodine map for active gastrointestinal bleeding: image quality, radiation dose and diagnostic performance. Eur J Radiol;84(5):884-891. https://doi.org/10.1016/j.ejrad.2015.01.013

    Article  PubMed  Google Scholar 

  9. De Cecco CN, Darnell A, Macias N, Ayuso JR, Rodriguez S, Rimola J, Pages M, Garcia-Criado A, Rengo M, Laghi A, Ayuso C (2013). Virtual unenhanced images of the abdomen with second-generation dual-source dual-energy computed tomography: image quality and liver lesion detection. Invest Radiol;48(1):1-9. https://doi.org/10.1097/RLI.0b013e31826e7902

    Article  PubMed  Google Scholar 

  10. Graser A, Johnson TR, Hecht EM, Becker CR, Leidecker C, Staehler M, Stief CG, Hildebrandt H, Godoy MC, Finn ME, Stepansky F, Reiser MF, Macari M (2009). Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology;252(2):433-440. https://doi.org/10.1148/radiol.2522080557

    Article  PubMed  Google Scholar 

  11. Meyer M, Nelson RC, Vernuccio F, Gonzalez F, Farjat AE, Patel BN, Samei E, Henzler T, Schoenberg SO, Marin D (2019). Virtual Unenhanced Images at Dual-Energy CT: Influence on Renal Lesion Characterization. Radiology;291(2):381-390. https://doi.org/10.1148/radiol.2019181100

    Article  PubMed  Google Scholar 

  12. Xiao JM, Hippe DS, Zecevic M, Zamora DA, Cai LM, Toia GV, Chandler AG, Dighe MK, O'Malley RB, Shuman WP, Wang CL, Mileto A (2021). Virtual Unenhanced Dual-Energy CT Images Obtained with a Multimaterial Decomposition Algorithm: Diagnostic Value for Renal Mass and Urinary Stone Evaluation. Radiology;298(3):611-619. https://doi.org/10.1148/radiol.2021192448

    Article  PubMed  Google Scholar 

  13. Lin YM, Chiou YY, Wu MH, Huang SS, Shen SH (2018). Attenuation values of renal parenchyma in virtual noncontrast images acquired from multiphase renal dual-energy CT: Comparison with standard noncontrast CT. Eur J Radiol;101:103-110. https://doi.org/10.1016/j.ejrad.2018.02.001

    Article  PubMed  ADS  Google Scholar 

  14. Dane B, Gupta A, Wells ML, Anderson MA, Fidler JL, Naringrekar HV, Allen BC, Brook OR, Bruining DH, Gee MS, Grand DJ, Kastenberg D, Khandelwal A, Sengupta N, Soto JA, Guglielmo FF (2023). Dual-Energy CT Evaluation of Gastrointestinal Bleeding. Radiographics;43(6):e220192. https://doi.org/10.1148/rg.220192

    Article  PubMed  Google Scholar 

  15. Parakh A, Lennartz S, An C, Rajiah P, Yeh BM, Simeone FJ, Sahani DV, Kambadakone AR (2021). Dual-Energy CT Images: Pearls and Pitfalls. Radiographics;41(1):98-119. https://doi.org/10.1148/rg.2021200102

    Article  PubMed  Google Scholar 

  16. Jungblut L, Sartoretti T, Kronenberg D, Mergen V, Euler A, Schmidt B, Alkadhi H, Frauenfelder T, Martini K (2022). Performance of virtual non-contrast images generated on clinical photon-counting detector CT for emphysema quantification: proof of concept. Br J Radiol;95(1135):20211367. https://doi.org/10.1259/bjr.20211367

    Article  PubMed  Google Scholar 

  17. Sartoretti T, Mergen V, Higashigaito K, Eberhard M, Alkadhi H, Euler A (2022). Virtual Noncontrast Imaging of the Liver Using Photon-Counting Detector Computed Tomography: A Systematic Phantom and Patient Study. Invest Radiol;57(7):488-493. https://doi.org/10.1097/RLI.0000000000000860

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bari Dane.

Ethics declarations

Conflict of interest

Bari Dane received Speaker honorarium from Siemens Healthineers. Daniel Freedman: None. Kun Qian: None. Luke Ginocchio: None. Paul Smereka: None. Alec Megibow is a Consultant for Bracco Diagnostics. Daniel Freedman controlled the data and Kun Qian analyzed the data.

Ethical approval

This study was institutional review board approved and Health Insurance Portability and Accountability Act compliant.

Consent to participate

Waiver of the requirement for informed consent.

Consent for publication

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dane, B., Freedman, D., Qian, K. et al. Photon-counting CT urogram: optimal acquisition potential (kV) determination for virtual noncontrast creation. Abdom Radiol 49, 868–874 (2024). https://doi.org/10.1007/s00261-023-04113-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-04113-7

Keywords

Navigation