Skip to main content

Advertisement

Log in

Imaging of abdominopelvic oncologic emergencies

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

With advancements in cancer treatment, the survival rates for many malignancies have increased. However, both the primary tumors and the treatments themselves can give rise to various complications. Acute symptoms in oncology patients require prompt attention. Abdominopelvic oncologic emergencies can be classified into four distinct categories: vascular, bowel, hepatopancreatobiliary, and bone-related complications. Radiologists need to be familiar with these complications to ensure timely diagnosis, which ultimately enhances patient outcomes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Hsu, J., et al., National characteristics of Emergency Department visits by patients with cancer in the United States. Am J Emerg Med, 2018. 36(11): p. 2038-2043.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tirumani, S.H., et al., MDCT of abdominopelvic oncologic emergencies. Cancer Imaging, 2013. 13(2): p. 238-52.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Halfdanarson, T.R., W.J. Hogan, and T.J. Moynihan, Oncologic emergencies: diagnosis and treatment. Mayo Clin Proc, 2006. 81(6): p. 835-48.

    Article  PubMed  Google Scholar 

  4. Uyeda, J.W., Utility of MR Imaging in Abdominopelvic Emergencies. Radiol Clin North Am, 2019. 57(4): p. 705-715.

    Article  PubMed  Google Scholar 

  5. Gomez, E., et al., CT of acute abdominopelvic hemorrhage: protocols, pearls, and pitfalls. Abdom Radiol (NY), 2022. 47(1): p. 475-484.

    Article  PubMed  Google Scholar 

  6. Cartoni, C., et al., Hemorrhagic complications in patients with advanced hematological malignancies followed at home: an Italian experience. Leukemia & Lymphoma, 2009. 50(3): p. 387-391.

    Article  Google Scholar 

  7. Wang, M.X., et al., Gastrointestinal bleeding: imaging and interventions in cancer patients. The British Journal of Radiology, 2022. 95(1135): p. 20211158.

    Article  PubMed  Google Scholar 

  8. Savatmongkorngul, S., S. Wongwaisayawan, and R. Kaewlai, Focused assessment with sonography for trauma: current perspectives. Open Access Emerg Med, 2017. 9: p. 57-62.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chong, W.K., V. Papadopoulou, and P.A. Dayton, Imaging with ultrasound contrast agents: current status and future. Abdom Radiol (NY), 2018. 43(4): p. 762-772.

    Article  PubMed  Google Scholar 

  10. Gaillard F, Y.J., Saber M, et al. Hemorrhage on MRI. 2023; Available from: https://radiopaedia.org/articles/haemorrhage-on-mri?lang=us.

  11. Takahashi, T., et al., An enhanced risk-group stratification system for more practical prognostication of clinically malignant gastrointestinal stromal tumors. Int J Clin Oncol, 2007. 12(5): p. 369-74.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, Y., et al., Tumor rupture predicts early metastasis and poor prognosis in stage III soft tissue sarcomas. World J Surg, 2011. 35(5): p. 1002-9.

    Article  PubMed  Google Scholar 

  13. Kim, H.C., et al., The various manifestations of ruptured hepatocellular carcinoma: CT imaging findings. Abdominal Imaging, 2008. 33(6): p. 633-642.

    Article  PubMed  Google Scholar 

  14. Canete-Portillo, S., et al., Vascular architectural patterns in clear cell renal cell carcinoma and clear cell papillary renal cell carcinoma. Virchows Archiv, 2021. 479(6): p. 1187-1196.

    Article  PubMed  Google Scholar 

  15. Thomas, A.J., et al., Bleeding Liver Masses: Imaging Features With Pathologic Correlation and Impact on Management. AJR Am J Roentgenol, 2019. 213(1): p. 8-16.

    Article  PubMed  Google Scholar 

  16. Thomas, A.J., et al., Bleeding Liver Masses: Imaging Features With Pathologic Correlation and Impact on Management. American Journal of Roentgenology, 2019. 213(1): p. 8-16.

    Article  PubMed  Google Scholar 

  17. Singh Bhinder, N. and S.M. Zangan, Hepatocellular Carcinoma Rupture Following Transarterial Chemoembolization. Semin intervent Radiol, 2015. 32(01): p. 049-053.

  18. Casillas, V.J., et al., Imaging of nontraumatic hemorrhagic hepatic lesions. Radiographics, 2000. 20(2): p. 367-78.

    Article  PubMed  CAS  Google Scholar 

  19. Renzulli, P., et al., Systematic review of atraumatic splenic rupture. British Journal of Surgery, 2009. 96(10): p. 1114-1121.

    Article  PubMed  CAS  Google Scholar 

  20. Samà, L., et al., Emergency Retroperitoneal Sarcoma Surgery for Preoperative Rupture and Hemoperitoneum: A Case Report. Cureus, 2021. 13(3): p. e13936.

    PubMed  PubMed Central  Google Scholar 

  21. Bonvalot, S., et al., Primary retroperitoneal sarcomas: a multivariate analysis of surgical factors associated with local control. J Clin Oncol, 2009. 27(1): p. 31-7.

    Article  PubMed  Google Scholar 

  22. Zorn, K.C., et al., Embolization of renal-artery pseudoaneurysm after laparoscopic partial nephrectomy for angiomyolipoma: case report and literature review. J Endourol, 2007. 21(7): p. 763-8.

    Article  PubMed  Google Scholar 

  23. Chia, C., et al., Splenic Artery Pseudoaneurysm Masquerading as a Pancreatic Cyst-A Diagnostic Challenge. Int Surg, 2015. 100(6): p. 1069-71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Schatz, R.A., S. Schabel, and D.C. Rockey, Idiopathic Splenic Artery Pseudoaneurysm Rupture as an Uncommon Cause of Hemorrhagic Shock. J Investig Med High Impact Case Rep, 2015. 3(2): p. 2324709615577816.

    PubMed  PubMed Central  Google Scholar 

  25. Savastano, S., et al., Arterial complications of pancreatitis: diagnostic and therapeutic role of radiology. Pancreas, 1993. 8(6): p. 687-92.

    Article  PubMed  CAS  Google Scholar 

  26. Tessier, D.J., et al., Clinical features and management of splenic artery pseudoaneurysm: case series and cumulative review of literature. Journal of Vascular Surgery, 2003. 38(5): p. 969-974.

    Article  PubMed  Google Scholar 

  27. Yamaçake, K.G., et al., Renal artery pseudoaneurysm after blunt renal trauma: report on three cases and review of the literature. Sao Paulo Med J, 2013. 131(5): p. 356-62.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kisa, E., et al., Renal artery pseudoaneurysm after open partial nephrectomy for renal cell carcinoma. Urologia, 2020. 87(1): p. 11-14.

    Article  PubMed  Google Scholar 

  29. Dan, A.M., et al., A rare case of renal artery aneurysm - dawning of new treatment approach. Urol Ann, 2022. 14(1): p. 99-101.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bai, H., et al., Erlotinib and gefitinib treatments of the lung cancer in an elderly patient result in gastrointestinal bleeding. Pak J Med Sci, 2013. 29(5): p. 1278-9.

    PubMed  PubMed Central  Google Scholar 

  31. Xiao, J., et al., Bleeding with gastrointestinal and ureteral ulcers after gefitinib treatment: a case report. Transl Cancer Res, 2021. 10(4): p. 1941-1946.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Yu, M., et al., Continuous Vaginal Bleeding Induced By EGFR-TKI in Premenopausal Female Patients With EGFR Mutant NSCLC. Frontiers in Oncology, 2022. 12.

  33. Khorana, A.A., et al., Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost, 2007. 5(3): p. 632-4.

    Article  PubMed  CAS  Google Scholar 

  34. Piscaglia, F., et al., Criteria for diagnosing benign portal vein thrombosis in the assessment of patients with cirrhosis and hepatocellular carcinoma for liver transplantation. Liver Transplantation, 2010. 16(5): p. 658-667.

    Article  PubMed  Google Scholar 

  35. Rohatgi, S., et al., Multimodality Imaging of Tumour Thrombus. Can Assoc Radiol J, 2015. 66(2): p. 121-9.

    Article  PubMed  Google Scholar 

  36. Krasna, M.J., et al., Vascular and neural invasion in colorectal carcinoma. Incidence and prognostic significance. Cancer, 1988. 61(5): p. 1018-23.

    PubMed  CAS  Google Scholar 

  37. Ikai, I., et al., Reevaluation of prognostic factors for survival after liver resection in patients with hepatocellular carcinoma in a Japanese nationwide survey. Cancer, 2004. 101(4): p. 796-802.

    Article  PubMed  Google Scholar 

  38. Hoehn, W. and P. Hermanek, Invasion of veins in renal cell carcinoma - frequency, correlation and prognosis. Eur Urol, 1983. 9(5): p. 276-80.

    Article  PubMed  CAS  Google Scholar 

  39. Yedururi, S., et al., Tumor thrombus in the large veins draining primary pelvic osteosarcoma on cross sectional imaging. Eur J Radiol, 2018. 105: p. 49-55.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Benezech, S., et al., Prognostic Value of Vascular Invasion in Pediatric Osteosarcomas. Pathol Oncol Res, 2016. 22(4): p. 847-52.

    Article  PubMed  Google Scholar 

  41. Lai, P., et al., Detection of tumour thrombus by 18F-FDG-PET/CT imaging. Eur J Cancer Prev, 2007. 16(1): p. 90-4.

    Article  PubMed  CAS  Google Scholar 

  42. Gunasekaran, A.K., et al., Hepatocellular Carcinoma with Inferior Vena Cava and Right Atrium Tumor Thrombus. Acta Med Litu, 2021. 28(2): p. 344-348.

    PubMed  PubMed Central  Google Scholar 

  43. Coppell, J.A., et al., Hepatic veno-occlusive disease following stem cell transplantation: incidence, clinical course, and outcome. Biol Blood Marrow Transplant, 2010. 16(2): p. 157-68.

    Article  PubMed  Google Scholar 

  44. Dalle, J.-H. and S.A. Giralt, Hepatic Veno-Occlusive Disease after Hematopoietic Stem Cell Transplantation: Risk Factors and Stratification, Prophylaxis, and Treatment. Biology of Blood and Marrow Transplantation, 2016. 22(3): p. 400-409.

    Article  PubMed  Google Scholar 

  45. Pihusch, M., et al., Diagnosis of hepatic veno-occlusive disease by plasminogen activator inhibitor-1 plasma antigen levels: a prospective analysis in 350 allogeneic hematopoietic stem cell recipients. Transplantation, 2005. 80(10): p. 1376-82.

    Article  PubMed  CAS  Google Scholar 

  46. in The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, E. Carreras, et al., Editors. 2019, Springer

  47. Copyright 2019, The Editor(s) (if applicable) and The Author(s). Cham (CH).

  48. Nishida, M., et al., Novel Ultrasonographic Scoring System of Sinusoidal Obstruction Syndrome after Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant, 2018. 24(9): p. 1896-1900.

    Article  PubMed  Google Scholar 

  49. Cairo, M.S., et al., Modified diagnostic criteria, grading classification and newly elucidated pathophysiology of hepatic SOS/VOD after haematopoietic cell transplantation. Br J Haematol, 2020. 190(6): p. 822-836.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Chan, S.S., et al., Imaging in Hepatic Veno-Occlusive Disease/Sinusoidal Obstruction Syndrome. Biology of Blood and Marrow Transplantation, 2020. 26(10): p. 1770-1779.

    Article  PubMed  Google Scholar 

  51. Nishida, M., et al., Novel Ultrasonographic Scoring System of Sinusoidal Obstruction Syndrome after Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2018. 24(9): p. 1896-1900.

    Article  PubMed  Google Scholar 

  52. Varki, A., Trousseau's syndrome: multiple definitions and multiple mechanisms. Blood, 2007. 110(6): p. 1723-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Pineo, G.F., et al., Tumors, mucus production, and hypercoagulability. Ann N Y Acad Sci, 1974. 230: p. 262-70.

    Article  PubMed  ADS  CAS  Google Scholar 

  54. Ikushima, S., et al., Trousseau's syndrome: cancer-associated thrombosis. Jpn J Clin Oncol, 2016. 46(3): p. 204-8.

    Article  PubMed  Google Scholar 

  55. Darvin, P., et al., Immune checkpoint inhibitors: recent progress and potential biomarkers. Experimental & Molecular Medicine, 2018. 50(12): p. 1-11.

    Article  Google Scholar 

  56. Fragulidis, G., et al., Immune-related intestinal pseudo-obstruction associated with nivolumab treatment in a lung cancer patient. J Oncol Pharm Pract, 2019. 25(2): p. 487-491.

    Article  PubMed  CAS  Google Scholar 

  57. Kondapalli, L., W. Bottinor, and C. Lenneman, By Releasing the Brakes With Immunotherapy, Are We Accelerating Atherosclerosis? Circulation, 2020. 142(24): p. 2312-2315.

    Article  PubMed  CAS  Google Scholar 

  58. Sharma, S.K., et al., Antibody-directed enzyme prodrug therapy (ADEPT). A three-phase study in ovarian tumor xenografts. Cell Biophys, 1994. 24-25: p. 219-28.

  59. Poels, K., et al., Immune checkpoint inhibitor treatment and atherosclerotic cardiovascular disease: an emerging clinical problem. J Immunother Cancer, 2021. 9(6).

  60. Ibañez, B., J.J. Badimon, and M.J. Garcia, Diagnosis of Atherosclerosis by Imaging. The American Journal of Medicine, 2009. 122(1, Supplement): p. S15-S25.

  61. Morani, A.C., et al., Imaging of acute abdomen in cancer patients. Abdom Radiol (NY), 2020. 45(8): p. 2287-2304.

    Article  PubMed  Google Scholar 

  62. Gore, R.M., et al., Bowel Obstruction. Radiol Clin North Am, 2015. 53(6): p. 1225-40.

    Article  PubMed  Google Scholar 

  63. Ripamonti, C.I., A.M. Easson, and H. Gerdes, Management of malignant bowel obstruction. European Journal of Cancer, 2008. 44(8): p. 1105-1115.

    Article  PubMed  Google Scholar 

  64. Silva, A.C., M. Pimenta, and L.S. Guimaraes, Small Bowel Obstruction: What to Look For. RadioGraphics, 2009. 29(2): p. 423-439.

    Article  PubMed  Google Scholar 

  65. Reddy, S. and M. Cappell, A Systematic Review of the Clinical Presentation, Diagnosis, and Treatment of Small Bowel Obstruction Current Gastroenterology Reports. 017; 19: 28. Cite this article9803 Accesses. 51.

  66. Shimura, T. and T. Joh, Evidence-based clinical management of acute malignant colorectal obstruction. Journal of clinical gastroenterology, 2016. 50(4): p. 273-285.

    Article  PubMed  Google Scholar 

  67. Ramanathan, S., et al., Large bowel obstruction in the emergency department: imaging spectrum of common and uncommon causes. Journal of Clinical imaging science, 2017. 7.

  68. Maglinte, D.D., et al., Reliability and role of plain film radiography and CT in the diagnosis of small-bowel obstruction. AJR Am J Roentgenol, 1996. 167(6): p. 1451-5.

    Article  PubMed  CAS  Google Scholar 

  69. Hayakawa, K., et al., CT findings of small bowel strangulation: the importance of contrast enhancement. Emerg Radiol, 2013. 20(1): p. 3-9.

    Article  PubMed  Google Scholar 

  70. Masselli, G. and G. Gualdi, CT and MR enterography in evaluating small bowel diseases: when to use which modality? Abdominal Imaging, 2013. 38(2): p. 249-259.

    Article  PubMed  Google Scholar 

  71. Balazs, A., P.K. Kupcsulik, and Z. Galambos, Esophagorespiratory fistulas of tumorous origin. Non-operative management of 264 cases in a 20-year period. European Journal of Cardio-Thoracic Surgery, 2008. 34(5): p. 1103-1107.

  72. Duda, J.B., S. Bhatt, and V.S. Dogra, Utility of CT Whirl Sign in Guiding Management of Small-Bowel Obstruction. American Journal of Roentgenology, 2008. 191(3): p. 743-747.

    Article  PubMed  Google Scholar 

  73. Sandhu, P.S., et al., Bowel transition points: multiplicity and posterior location at CT are associated with small-bowel volvulus. Radiology, 2007. 245(1): p. 160-167.

    Article  PubMed  Google Scholar 

  74. Mbengue, A., et al., Closed loop obstruction: pictorial essay. Diagn Interv Imaging, 2015. 96(2): p. 213-20.

    Article  PubMed  CAS  Google Scholar 

  75. Langell, J.T. and S.J. Mulvihill, Gastrointestinal perforation and the acute abdomen. Med Clin North Am, 2008. 92(3): p. 599-625, viii-ix.

  76. Bosscher, M.R.F., B.L. van Leeuwen, and H.J. Hoekstra, Surgical emergencies in oncology. Cancer Treatment Reviews, 2014. 40(8): p. 1028-1036.

    Article  PubMed  CAS  Google Scholar 

  77. Kumar, A., et al., The etiology of pneumoperitoneum in the 21st century. Journal of Trauma and Acute Care Surgery, 2012. 73(3): p. 542-548.

    Article  PubMed  Google Scholar 

  78. Ara, C., et al., Spontaneous intestinal perforation due to non-Hodgkin's lymphoma: evaluation of eight cases. Digestive diseases and sciences, 2007. 52(8): p. 1752-1756.

    Article  PubMed  Google Scholar 

  79. Del Gaizo, A.J., et al., From esophagus to rectum: a comprehensive review of alimentary tract perforations at computed tomography. Abdom Imaging, 2014. 39(4): p. 802-23.

    Article  PubMed  Google Scholar 

  80. Dormagen, J.B., N. Verma, and K.R. Fink, Imaging in Oncologic Emergencies. Seminars in Roentgenology, 2020. 55(2): p. 95-114.

    Article  PubMed  Google Scholar 

  81. Hainaux, B., et al., Accuracy of MDCT in Predicting Site of Gastrointestinal Tract Perforation. American Journal of Roentgenology, 2006. 187(5): p. 1179-1183.

    Article  PubMed  Google Scholar 

  82. Kim, S.H., et al., Gastrointestinal tract perforation: MDCT findings according to the perforation sites. Korean J Radiol, 2009. 10(1): p. 63-70.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Furukawa, A., et al., Gastrointestinal tract perforation: CT diagnosis of presence, site, and cause. Abdom Imaging, 2005. 30(5): p. 524-34.

    Article  PubMed  CAS  Google Scholar 

  84. Faggian, A., et al., Imaging Patients With Alimentary Tract Perforation: Literature Review. Semin Ultrasound CT MR, 2016. 37(1): p. 66-9.

    Article  MathSciNet  PubMed  Google Scholar 

  85. Picone, D., et al., Imaging Assessment of Gastroduodenal Perforations. Semin Ultrasound CT MR, 2016. 37(1): p. 16-22.

    Article  PubMed  Google Scholar 

  86. Imuta, M., et al., Multidetector CT findings suggesting a perforation site in the gastrointestinal tract: analysis in surgically confirmed 155 patients. Radiat Med, 2007. 25(3): p. 113-8.

    Article  PubMed  Google Scholar 

  87. Pouli, S., et al., Gastrointestinal perforation: clinical and MDCT clues for identification of aetiology. Insights into Imaging, 2020. 11(1): p. 1-19.

    Article  Google Scholar 

  88. Cadenas Rodríguez, L., et al., [Use of multidetector computed tomography for locating the site of gastrointestinal tract perforations]. Cir Esp, 2013. 91(5): p. 316-23.

    Article  PubMed  Google Scholar 

  89. Borofsky, S., et al., The emergency room diagnosis of gastrointestinal tract perforation: the role of CT. Emergency Radiology, 2015. 22(3): p. 315-327.

    Article  PubMed  Google Scholar 

  90. Pow-anpongkul, P., P.G. Chu, and T.D. Kidambi, Capecitabine-Induced Enteritis Leading to Small Bowel Obstruction. Gastroenterology, 2019. 156(5): p. e8-e9.

    Article  PubMed  Google Scholar 

  91. Al-Gahmi, A.M., et al., Capecitabine-induced terminal ileitis. Annals of Saudi Medicine, 2012. 32(6): p. 661-662.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Iranzo, I., et al., Endoscopic evaluation of immunotherapy-induced gastrointestinal toxicity. World J Gastrointest Endosc, 2018. 10(12): p. 392-399.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Mourad, A.P. and M.S. De Robles, Chemoimmunotherapy-related enteritis resulting in a mechanical small bowel obstruction – A case report. International Journal of Surgery Case Reports, 2021. 79: p. 131-134.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ostby, S.A., et al., Bowel Perforation in the Emergency Department Related to Bevacizumab Therapy and Recurrent Ovarian Cancer. Clin Pract Cases Emerg Med, 2020. 4(2): p. 227-229.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Thornton, E., et al., Imaging features of bowel toxicities in the setting of molecular targeted therapies in cancer patients. The British Journal of Radiology, 2012. 85(1018): p. 1420-1426.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sliesoraitis, S. and B. Tawfik, Bevacizumab-induced bowel perforation. J Am Osteopath Assoc, 2011. 111(7): p. 437-41.

    PubMed  Google Scholar 

  97. Shaikh, D.H., et al., Paclitaxel-Induced Bowel Perforation: A Rare Cause of Acute Abdomen. Case Reports in Gastroenterology, 2020. 14(3): p. 687-694.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Rodrigues, F.G., G. Dasilva, and S.D. Wexner, Neutropenic enterocolitis. World J Gastroenterol, 2017. 23(1): p. 42-47.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Reginelli, A., et al., Chemotherapy-induced bowel ischemia: diagnostic imaging overview. Abdom Radiol (NY), 2022. 47(5): p. 1556-1564.

    Article  PubMed  Google Scholar 

  100. Pickhardt, P.J., S. Bhalla, and D.M. Balfe, Acquired gastrointestinal fistulas: classification, etiologies, and imaging evaluation. Radiology, 2002. 224(1): p. 9-23.

    Article  PubMed  Google Scholar 

  101. Shinagare, A.B., et al., Pneumatosis intestinalis and bowel perforation associated with molecular targeted therapy: an emerging problem and the role of radiologists in its management. AJR Am J Roentgenol, 2012. 199(6): p. 1259-65.

    Article  PubMed  Google Scholar 

  102. Dorelo, R., et al., Gastrocolic fistula: an unusual presentation of colon cancer. Endoscopy, 2021. 53(12): p. E444-E445.

    Article  PubMed  Google Scholar 

  103. Narayanan, P., et al., Fistulas in malignant gynecologic disease: etiology, imaging, and management. Radiographics, 2009. 29(4): p. 1073-83.

    Article  PubMed  Google Scholar 

  104. Yahagi, N., et al., Ovarian carcinoma complicated by sigmoid colon fistula formation: a case report and review of the literature. J Obstet Gynaecol Res, 2011. 37(3): p. 250-3.

    Article  PubMed  Google Scholar 

  105. Budimir, I., et al., Secondary arterio-enteric fistula: case report and review of the literature. Acta Clin Croat, 2012. 51(1): p. 79-82.

    PubMed  Google Scholar 

  106. Zhao, R.J., et al., Enteral fistula as initial manifestation of primary intestinal lymphoma. Chin Med J (Engl), 2020. 133(1): p. 101-102.

    Article  PubMed  Google Scholar 

  107. Palumbo, V., et al., Entero-neovesical fistula after radical cystectomy and orthotopic ileal neobladder: A report of two cases requiring surgical management. Urologia Journal, 2019. 86(1): p. 39-42.

    Article  PubMed  Google Scholar 

  108. Chamberlain, R.S., H.L. Kaufman, and D.N. Danforth, Enterocutaneous fistula in cancer patients: etiology, management, outcome, and impact on further treatment. Am Surg, 1998. 64(12): p. 1204-11.

    PubMed  CAS  Google Scholar 

  109. Wang, V., et al., Enterocolic fistula associated with an intestinal lymphoma. MedGenMed, 2007. 9(1): p. 28.

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Bhatia, T.P., P. Ghimire, and M.L. Panhani, Spigelian hernia. Kathmandu Univ Med J (KUMJ), 2010. 8(30): p. 241-3.

    PubMed  CAS  Google Scholar 

  111. Kuzan, T.Y., et al., Spigelian Hernia Including the Urinary Bladder: A Rare Potential Cause of Surgical Complication. J Radiol Case Rep, 2019. 13(3): p. 8-12.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Boulay, B.R. and A. Birg, Malignant biliary obstruction: From palliation to treatment. World J Gastrointest Oncol, 2016. 8(6): p. 498-508.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Oneda, E., M. Abu Hilal, and A. Zaniboni, Biliary Tract Cancer: Current Medical Treatment Strategies. Cancers (Basel), 2020. 12(5).

  114. Pinto, A., et al., Accuracy of ultrasonography in the diagnosis of acute calculous cholecystitis: review of the literature. Critical Ultrasound Journal, 2013. 5(1): p. S11.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Barie, P.S. and E. Fischer, Acute acalculous cholecystitis. J Am Coll Surg, 1995. 180(2): p. 232-44.

    PubMed  CAS  Google Scholar 

  116. Abu-Sbeih, H., et al., Case series of cancer patients who developed cholecystitis related to immune checkpoint inhibitor treatment. Journal for ImmunoTherapy of Cancer, 2019. 7(1): p. 118.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Badia, J.M., et al., Surgical management of acute cholecystitis. Results of a nation-wide survey among Spanish surgeons. Cir Esp, 2014. 92(8): p. 517-24.

  118. Wignall, T.A., B.M. Carrington, and J.P. Logue, Post-radiotherapy osteomyelitis of the symphysis pubis: computed tomographic features. Clin Radiol, 1998. 53(2): p. 126-30.

    Article  PubMed  CAS  Google Scholar 

  119. Zhao, N., et al., CT-guided special approaches of drainage for intraabdominal and pelvic abscesses: One single center's experience and review of literature. Medicine (Baltimore), 2018. 97(42): p. e12905.

    Article  PubMed  Google Scholar 

  120. Lundstedt, C., et al., Radiological diagnosis in proven intraabdominal abscess formation: a comparison between plain films of the abdomen, ultrasonography and computerized tomography. Gastrointest Radiol, 1983. 8(3): p. 261-6.

    Article  PubMed  CAS  Google Scholar 

  121. Halber, M.D., et al., Intraabdominal abscess: current concepts in radiologic evaluation. AJR Am J Roentgenol, 1979. 133(1): p. 9-13.

    Article  PubMed  CAS  Google Scholar 

  122. Malekzadeh, S., et al., Typical imaging finding of hepatic infections: a pictorial essay. Abdom Radiol (NY), 2021. 46(2): p. 544-561.

    Article  MathSciNet  PubMed  Google Scholar 

  123. Bächler, P., et al., Multimodality Imaging of Liver Infections: Differential Diagnosis and Potential Pitfalls. Radiographics, 2016. 36(4): p. 1001-23.

    Article  PubMed  Google Scholar 

  124. Reddy, C.A., et al., Nivolumab-induced large-duct cholangiopathy treated with ursodeoxycholic acid and tocilizumab. Immunotherapy, 2019. 11(18): p. 1527-1531.

    Article  PubMed  CAS  Google Scholar 

  125. Sayed Ahmed, A., et al., Type 3 autoimmune pancreatitis (immune checkpoint inhibitor-induced pancreatitis). Curr Opin Gastroenterol, 2022. 38(5): p. 516-520.

    Article  PubMed  CAS  Google Scholar 

  126. Flores-Calderón, J., et al., Acute pancreatitis in children with acute lymphoblastic leukemia treated with L-asparaginase. J Pediatr Hematol Oncol, 2009. 31(10): p. 790-3.

    Article  PubMed  Google Scholar 

  127. Cole, J.S. and R.A. Patchell, Metastatic epidural spinal cord compression. The Lancet Neurology, 2008. 7(5): p. 459-466.

    Article  PubMed  Google Scholar 

  128. Bach, F., et al., Metastatic spinal cord compression. Occurrence, symptoms, clinical presentations and prognosis in 398 patients with spinal cord compression. Acta Neurochir (Wien), 1990. 107(1-2): p. 37-43.

  129. Schiff, D., B.P. O'Neill, and V.J. Suman, Spinal epidural metastasis as the initial manifestation of malignancy: clinical features and diagnostic approach. Neurology, 1997. 49(2): p. 452-6.

    Article  PubMed  CAS  Google Scholar 

  130. Li, K.C. and P.Y. Poon, Sensitivity and specificity of MRI in detecting malignant spinal cord compression and in distinguishing malignant from benign compression fractures of vertebrae. Magn Reson Imaging, 1988. 6(5): p. 547-56.

    Article  PubMed  CAS  Google Scholar 

  131. Milton, J., J. Renner, and V. Awuor, B-cell lymphoma presenting as multiple nerve sheath tumors. Surg Neurol Int, 2017. 8: p. 142.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hollender, A., et al., Prognostic factors in 140 adult patients with non-Hodgkin's lymphoma with systemic central nervous system (CNS) involvement. A single centre analysis. Eur J Cancer, 2000. 36(14): p. 1762-8.

  133. Baehring, J.M., et al., Neurolymphomatosis. Neuro Oncol, 2003. 5(2): p. 104-15.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Grisariu, S., et al., Neurolymphomatosis: an International Primary CNS Lymphoma Collaborative Group report. Blood, 2010. 115(24): p. 5005-11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Chaturvedi, A., et al., Imaging of thoracic hernias: types and complications. Insights Imaging, 2018. 9(6): p. 989-1005.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: CW, BM; Literature search: AP, BM, CW; writing—original draft preparation: AP, BM; writing—review and editing: BM, CW; supervision: BM, CW.

Corresponding author

Correspondence to Carolyn Wang.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pooyan, A., Mansoori, B. & Wang, C. Imaging of abdominopelvic oncologic emergencies. Abdom Radiol 49, 823–841 (2024). https://doi.org/10.1007/s00261-023-04112-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-04112-8

Keywords

Navigation