Skip to main content

Advertisement

Log in

Potential applications of PET/MRI in non-oncologic conditions within the abdomen and pelvis

  • Special Section: PET/MR
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

PET/MRI is a relatively new imaging modality with several advantages over PET/CT that promise to improve imaging of the abdomen and pelvis for specific diagnostic tasks by combining the superior soft tissue characterization of MRI with the functional information acquired from PET. PET/MRI has an established role in staging and response assessment of multiple abdominopelvic malignancies, but the modality is not yet established for non-oncologic conditions of the abdomen and pelvis. In this review, potential applications of PET/MRI for non-oncologic conditions of abdomen and pelvis are outlined, and the available literature is reviewed to highlight promising areas for further research and translation into clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

© SNMMI

Fig. 2

© SNMMI

Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cabello J, Ziegler SI. Advances in PET/MR instrumentation and image reconstruction. Br J Radiol. 2018;91(1081):20160363.

    Article  PubMed  Google Scholar 

  2. Galgano SJ, Calderone CE, Xie C, Smith EN, Porter KK, McConathy JE. Applications of PET/MRI in Abdominopelvic Oncology. Radiographics. 2021;41(6):1750-65.

    Article  PubMed  Google Scholar 

  3. Hope TA, Verdin EF, Bergsland EK, Ohliger MA, Corvera CU, Nakakura EK. Correcting for respiratory motion in liver PET/MRI: preliminary evaluation of the utility of bellows and navigated hepatobiliary phase imaging. EJNMMI Phys. 2015;2(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Panda A, Garg I, Truty MJ, Kline TL, Johnson MP, Ehman EC, et al. Borderline Resectable and Locally Advanced Pancreatic Cancer: FDG PET/MRI and CT Tumor Metrics for Assessment of Pathologic Response to Neoadjuvant Therapy and Prediction of Survival. AJR Am J Roentgenol. 2021;217(3):730-40.

    Article  PubMed  Google Scholar 

  5. Martin O, Schaarschmidt BM, Kirchner J, Suntharalingam S, Grueneisen J, Demircioglu A, et al. PET/MRI Versus PET/CT for Whole-Body Staging: Results from a Single-Center Observational Study on 1,003 Sequential Examinations. J Nucl Med. 2020;61(8):1131-6.

    Article  PubMed  CAS  Google Scholar 

  6. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol Hepatol. 2020;5(1):17–30.

  7. Bicik I, Bauerfeind P, Breitbach T, von Schulthess GK, Fried M. Inflammatory bowel disease activity measured by positron-emission tomography. Lancet. 1997;350(9073):262.

    Article  PubMed  CAS  Google Scholar 

  8. Lovinfosse P, Hustinx R. The role of PET imaging in inflammatory bowel diseases: state-of-the-art review. Q J Nucl Med Mol Imaging. 2022;66(3):206-17.

    Article  PubMed  Google Scholar 

  9. Beiderwellen K, Kinner S, Gomez B, Lenga L, Bellendorf A, Heusch P, et al. Hybrid imaging of the bowel using PET/MR enterography: Feasibility and first results. Eur J Radiol. 2016;85(2):414-21.

    Article  PubMed  Google Scholar 

  10. Domachevsky L, Leibovitzh H, Avni-Biron I, Lichtenstein L, Goldberg N, Nidam M, et al. Correlation of 18F-FDG PET/MRE Metrics with Inflammatory Biomarkers in Patients with Crohn's Disease: A Pilot Study. Contrast Media Mol Imaging. 2017;2017:7167292.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Catalano OA, Wu V, Mahmood U, Signore A, Vangel M, Soricelli A, et al. Diagnostic performance of PET/MR in the evaluation of active inflammation in Crohn disease. Am J Nucl Med Mol Imaging. 2018;8(1):62-9.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Li Y, Langhorst J, Koch AK, Demircioglu A, Nensa F, Kirchner J, et al. Assessment of Ileocolonic Inflammation in Crohn's Disease: Which Surrogate Marker Is Better-MaRIA, Clermont, or PET/MR Index? Initial Results of a Feasibility Trial. J Nucl Med. 2019;60(6):851-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Li Y, Khamou M, Schaarschmidt BM, Umutlu L, Forsting M, Demircioglu A, et al. Comparison of (18)F-FDG PET-MR and fecal biomarkers in the assessment of disease activity in patients with ulcerative colitis. Br J Radiol. 2020;93(1112):20200167.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li Y, Schaarschmidt B, Umutlu L, Forsting M, Demircioglu A, Koch AK, et al. (18)F-FDG PET-MR enterography in predicting histological active disease using the Nancy index in ulcerative colitis: a randomized controlled trial. Eur J Nucl Med Mol Imaging. 2020;47(4):768-77.

    Article  PubMed  Google Scholar 

  15. Li Y, Langhorst J, Koch AK, Demircioglu A, Schaarschmidt B, Theysohn JM, et al. Comparison of acceptance of PET/MR enterography and ileocolonoscopy in patients with inflammatory bowel diseases. Clin Imaging. 2020;64:11-7.

    Article  PubMed  Google Scholar 

  16. Barkmeier DT, Dillman JR, Al-Hawary M, Heider A, Davenport MS, Smith EA, et al. MR enterography-histology comparison in resected pediatric small bowel Crohn disease strictures: can imaging predict fibrosis? Pediatr Radiol. 2016;46(4):498-507.

    Article  PubMed  Google Scholar 

  17. Bruining DH, Zimmermann EM, Loftus EV, Jr., Sandborn WJ, Sauer CG, Strong SA. Consensus Recommendations for Evaluation, Interpretation, and Utilization of Computed Tomography and Magnetic Resonance Enterography in Patients With Small Bowel Crohn's Disease. Radiology. 2018;286(3):776-99.

    Article  PubMed  Google Scholar 

  18. Chiorean MV, Sandrasegaran K, Saxena R, Maglinte DD, Nakeeb A, Johnson CS. Correlation of CT enteroclysis with surgical pathology in Crohn's disease. Am J Gastroenterol. 2007;102(11):2541-50.

    Article  PubMed  Google Scholar 

  19. Rimola J, Planell N, Rodríguez S, Delgado S, Ordás I, Ramírez-Morros A, et al. Characterization of inflammation and fibrosis in Crohn's disease lesions by magnetic resonance imaging. Am J Gastroenterol. 2015;110(3):432-40.

    Article  PubMed  Google Scholar 

  20. Zappa M, Stefanescu C, Cazals-Hatem D, Bretagnol F, Deschamps L, Attar A, et al. Which magnetic resonance imaging findings accurately evaluate inflammation in small bowel Crohn's disease? A retrospective comparison with surgical pathologic analysis. Inflamm Bowel Dis. 2011;17(4):984-93.

    Article  PubMed  Google Scholar 

  21. Catalano OA, Gee MS, Nicolai E, Selvaggi F, Pellino G, Cuocolo A, et al. Evaluation of Quantitative PET/MR Enterography Biomarkers for Discrimination of Inflammatory Strictures from Fibrotic Strictures in Crohn Disease. Radiology. 2016;278(3):792-800.

    Article  PubMed  Google Scholar 

  22. Pellino G, Nicolai E, Catalano OA, Campione S, D'Armiento FP, Salvatore M, et al. PET/MR Versus PET/CT Imaging: Impact on the Clinical Management of Small-Bowel Crohn's Disease. J Crohns Colitis. 2016;10(3):277-85.

    Article  PubMed  Google Scholar 

  23. Luo Y, Pan Q, Xu H, Zhang R, Li J, Li F. Active uptake of (68)Ga-FAPI in Crohn's disease but not in ulcerative colitis. Eur J Nucl Med Mol Imaging. 2021;48(5):1682-3.

    Article  PubMed  Google Scholar 

  24. Rezazadeh F, Ramos N, Saliganan A-D, Al-Hallak N, Chen K, Mohamad B, et al. Detection of IL23p40 via Positron Emission Tomography Visualized Inflammatory Bowel Disease. bioRxiv. 2022:2022.11.30.518419.

  25. Seo M, Kim Y, Ye BD, Park SH, Kim SY, Jung JH, et al. PET Imaging of System x(C) (-) in Immune Cells for Assessment of Disease Activity in Mice and Patients with Inflammatory Bowel Disease. J Nucl Med. 2022;63(10):1586-91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Zeiser R, Blazar BR. Acute Graft-versus-Host Disease — Biologic Process, Prevention, and Therapy. New England Journal of Medicine. 2017;377(22):2167-79.

    Article  PubMed  CAS  Google Scholar 

  27. Roll W, Evers G, Strotmann R, Albring J, Reicherts C, Noto B, et al. Fluorodeoxyglucose F 18 for the Assessment of Acute Intestinal Graft-versus-Host Disease and Prediction of Response to Immunosuppressive Therapy. Transplant Cell Ther. 2021;27(7):603-10.

    Article  PubMed  CAS  Google Scholar 

  28. Roll W, Schindler P, Masthoff M, Strotmann R, Albring J, Reicherts C, et al. (18)F-FDG-PET-MRI for the assessment of acute intestinal graft-versus-host-disease (GvHD). BMC Cancer. 2021;21(1):1015.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wong RJ, Singal AK. Trends in Liver Disease Etiology Among Adults Awaiting Liver Transplantation in the United States 2014–2019. JAMA Network Open. 2020;3(2):e1920294-e.

  30. Keramida G, Peters AM. FDG PET/CT of the non-malignant liver in an increasingly obese world population. Clin Physiol Funct Imaging. 2020;40(5):304-19.

    Article  PubMed  CAS  Google Scholar 

  31. Ratziu V, Charlotte F, Heurtier A, Gombert S, Giral P, Bruckert E, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128(7):1898-906.

    Article  PubMed  Google Scholar 

  32. Regev A, Berho M, Jeffers LJ, Milikowski C, Molina EG, Pyrsopoulos NT, et al. Sampling error and intraobserver variation in liver biopsy in patients with chronic HCV infection. The American journal of gastroenterology. 2002;97(10):2614-8.

    Article  PubMed  Google Scholar 

  33. Bural GG, Torigian DA, Burke A, Houseni M, Alkhawaldeh K, Cucchiara A, et al. Quantitative assessment of the hepatic metabolic volume product in patients with diffuse hepatic steatosis and normal controls through use of FDG-PET and MR imaging: a novel concept. Mol Imaging Biol. 2010;12(3):233-9.

    Article  PubMed  Google Scholar 

  34. Sarkar S, Corwin MT, Olson KA, Stewart SL, Liu CH, Badawi RD, et al. Pilot Study to Diagnose Nonalcoholic Steatohepatitis With Dynamic (18)F-FDG PET. AJR Am J Roentgenol. 2019;212(3):529-37.

    Article  PubMed  Google Scholar 

  35. Wang G, Corwin MT, Olson KA, Badawi RD, Sarkar S. Dynamic PET of human liver inflammation: impact of kinetic modeling with optimization-derived dual-blood input function. Phys Med Biol. 2018;63(15):155004.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Allen AM, Shah VH, Therneau TM, Venkatesh SK, Mounajjed T, Larson JJ, et al. The Role of Three-Dimensional Magnetic Resonance Elastography in the Diagnosis of Nonalcoholic Steatohepatitis in Obese Patients Undergoing Bariatric Surgery. Hepatology. 2020;71(2):510-21.

    Article  PubMed  Google Scholar 

  37. Yin M, Glaser KJ, Manduca A, Mounajjed T, Malhi H, Simonetto DA, et al. Distinguishing between Hepatic Inflammation and Fibrosis with MR Elastography. Radiology. 2017;284(3):694-705.

    Article  PubMed  Google Scholar 

  38. Idilman IS, Celik A, Savas B, Idilman R, Karcaaltincaba M. The feasibility of T2 mapping in the assessment of hepatic steatosis, inflammation, and fibrosis in patients with non-alcoholic fatty liver disease: a preliminary study. Clin Radiol. 2021;76(9):709.e13-.e18.

  39. Venkatesh SK, Wells ML, Miller FH, Jhaveri KS, Silva AC, Taouli B, et al. Magnetic resonance elastography: beyond liver fibrosis-a case-based pictorial review. Abdom Radiol (NY). 2018;43(7):1590-611.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Wildman-Tobriner B, Middleton MM, Moylan CA, Rossi S, Flores O, Chang ZA, et al. Association Between Magnetic Resonance Imaging-Proton Density Fat Fraction and Liver Histology Features in Patients With Nonalcoholic Fatty Liver Disease or Nonalcoholic Steatohepatitis. Gastroenterology. 2018;155(5):1428-35.e2.

    Article  PubMed  Google Scholar 

  41. Pirasteh A, Periyasamy S, Meudt JJ, Liu Y, Lee LM, Schachtschneider KM, et al. Staging Liver Fibrosis by Fibroblast Activation Protein Inhibitor PET in a Human-Sized Swine Model. J Nucl Med. 2022;63(12):1956-61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Mori Y, Dendl K, Cardinale J, Kratochwil C, Giesel FL, Haberkorn U. FAPI PET: Fibroblast Activation Protein Inhibitor Use in Oncologic and Nononcologic Disease. Radiology. 2023:220749.

  43. Nakazawa T, Ohara H, Sano H, Ando T, Imai H, Takada H, et al. Difficulty in diagnosing autoimmune pancreatitis by imaging findings. Gastrointest Endosc. 2007;65(1):99-108.

    Article  PubMed  Google Scholar 

  44. Lee TY, Kim MH, Park DH, Seo DW, Lee SK, Kim JS, et al. Utility of 18F-FDG PET/CT for differentiation of autoimmune pancreatitis with atypical pancreatic imaging findings from pancreatic cancer. AJR Am J Roentgenol. 2009;193(2):343-8.

    Article  PubMed  Google Scholar 

  45. Nakajo M, Jinnouchi S, Fukukura Y, Tanabe H, Tateno R, Nakajo M. The efficacy of whole-body FDG-PET or PET/CT for autoimmune pancreatitis and associated extrapancreatic autoimmune lesions. Eur J Nucl Med Mol Imaging. 2007;34(12):2088-95.

    Article  PubMed  Google Scholar 

  46. Ozaki Y, Oguchi K, Hamano H, Arakura N, Muraki T, Kiyosawa K, et al. Differentiation of autoimmune pancreatitis from suspected pancreatic cancer by fluorine-18 fluorodeoxyglucose positron emission tomography. J Gastroenterol. 2008;43(2):144-51.

    Article  PubMed  CAS  Google Scholar 

  47. Shigekawa M, Yamao K, Sawaki A, Hara K, Takagi T, Bhatia V, et al. Is (18)F-fluorodeoxyglucose positron emission tomography meaningful for estimating the efficacy of corticosteroid therapy in patients with autoimmune pancreatitis? J Hepatobiliary Pancreat Sci. 2010;17(3):269-74.

    Article  PubMed  Google Scholar 

  48. Zhang J, Shao C, Wang J, Cheng C, Zuo C, Sun G, et al. Autoimmune pancreatitis: whole-body 18F-FDG PET/CT findings. Abdom Imaging. 2013;38(3):543-9.

    Article  PubMed  Google Scholar 

  49. Zhang J, Jia G, Zuo C, Jia N, Wang H. (18)F- FDG PET/CT helps differentiate autoimmune pancreatitis from pancreatic cancer. BMC Cancer. 2017;17(1):695.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ha J, Choi SH, Byun JH, Kim KW, Kim SY, Kim JH, et al. Meta-analysis of CT and MRI for differentiation of autoimmune pancreatitis from pancreatic adenocarcinoma. Eur Radiol. 2021;31(5):3427-38.

    Article  PubMed  Google Scholar 

  51. Rauscher I, Eiber M, Algül H, Siveke JT, Weirich G, Schlitter AM, et al. Multiparametric 18F-FDG PET/MR follow-up in a patient with autoimmune pancreatitis. Eur J Hybrid Imaging. 2017;1(1):11.

    Article  PubMed  Google Scholar 

  52. Luo Y, Pan Q, Yang H, Peng L, Zhang W, Li F. Fibroblast Activation Protein-Targeted PET/CT with (68)Ga-FAPI for Imaging IgG4-Related Disease: Comparison to (18)F-FDG PET/CT. J Nucl Med. 2021;62(2):266-71.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang Z, Jia G, Pan G, Cao K, Yang Q, Meng H, et al. Comparison of the diagnostic efficacy of (68) Ga-FAPI-04 PET/MR and (18)F-FDG PET/CT in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging. 2022;49(8):2877-88.

    Article  PubMed  CAS  Google Scholar 

  54. Geist BK, Baltzer P, Fueger B, Hamboeck M, Nakuz T, Papp L, et al. Assessing the kidney function parameters glomerular filtration rate and effective renal plasma flow with dynamic FDG-PET/MRI in healthy subjects. EJNMMI Res. 2018;8(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Geist BK, Baltzer P, Fueger B, Hamboeck M, Nakuz T, Papp L, et al. Assessment of the kidney function parameters split function, mean transit time, and outflow efficiency using dynamic FDG-PET/MRI in healthy subjects. Eur J Hybrid Imaging. 2019;3(1):3.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pajenda S, Rasul S, Hacker M, Wagner L, Geist BK. Dynamic 2-deoxy-2[18F] fluoro-D-glucose PET/MRI in human renal allotransplant patients undergoing acute kidney injury. Sci Rep. 2020;10(1):8270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Rasul S, Geist BK, Brath H, Baltzer P, Sundar LKS, Pichler V, et al. Response evaluation of SGLT2 inhibitor therapy in patients with type 2 diabetes mellitus using (18)F-FDG PET/MRI. BMJ Open Diabetes Res Care. 2020;8(1).

  58. Jha P, Sakala M, Chamie LP, Feldman M, Hindman N, Huang C, et al. Endometriosis MRI lexicon: consensus statement from the society of abdominal radiology endometriosis disease-focused panel. Abdom Radiol (NY). 2020;45(6):1552-68.

    Article  PubMed  Google Scholar 

  59. Cosma S, Salgarello M, Ceccaroni M, Gorgoni G, Riboni F, La Paglia E, et al. Accuracy of a new diagnostic tool in deep infiltrating endometriosis: Positron emission tomography-computed tomography with 16α-[18F]fluoro-17β-estradiol. J Obstet Gynaecol Res. 2016;42(12):1724-33.

    Article  PubMed  CAS  Google Scholar 

  60. Caiafa RO, Vinuesa AS, Izquierdo RS, Brufau BP, Ayuso Colella JR, Molina CN. Retroperitoneal fibrosis: role of imaging in diagnosis and follow-up. Radiographics. 2013;33(2):535-52.

    Article  PubMed  Google Scholar 

  61. Brandt AS, Kamper L, Kukuk S, Piroth W, Haage P, Roth S. An aid to decision-making in therapy of retroperitoneal fibrosis: dynamic enhancement analysis of gadolinium MRI. J Clin Med Res. 2013;5(1):49-56.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Burn PR, Singh S, Barbar S, Boustead G, King CM. Role of gadolinium-enhanced magnetic resonance imaging in retroperitoneal fibrosis. Can Assoc Radiol J. 2002;53(3):168-70.

    PubMed  Google Scholar 

  63. Kamper L, Brandt AS, Ekamp H, Abanador-Kamper N, Piroth W, Roth S, et al. Diffusion-weighted MRI findings of treated and untreated retroperitoneal fibrosis. Diagn Interv Radiol. 2014;20(6):459-63.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kamper L, Brandt AS, Scharwächter C, Kukuk S, Roth S, Haage P, et al. MR evaluation of retroperitoneal fibrosis. Rofo. 2011;183(8):721-6.

    Article  PubMed  CAS  Google Scholar 

  65. Bertagna F, Treglia G, Leccisotti L, Bosio G, Motta F, Giordano A, et al. [18F] FDG-PET/CT in patients affected by retroperitoneal fibrosis: a bicentric experience. Jpn J Radiol. 2012;30(5):415-21.

    Article  PubMed  Google Scholar 

  66. Jansen I, Hendriksz TR, Han SH, Huiskes AW, van Bommel EF. (18)F-fluorodeoxyglucose position emission tomography (FDG-PET) for monitoring disease activity and treatment response in idiopathic retroperitoneal fibrosis. Eur J Intern Med. 2010;21(3):216-21.

    Article  PubMed  CAS  Google Scholar 

  67. Moroni G, Castellani M, Balzani A, Dore R, Bonelli N, Longhi S, et al. The value of (18)F-FDG PET/CT in the assessment of active idiopathic retroperitoneal fibrosis. Eur J Nucl Med Mol Imaging. 2012;39(10):1635-42.

    Article  PubMed  Google Scholar 

  68. Vaglio A, Greco P, Versari A, Filice A, Cobelli R, Manenti L, et al. Post-treatment residual tissue in idiopathic retroperitoneal fibrosis: active residual disease or silent "scar" ? A study using 18F-fluorodeoxyglucose positron emission tomography. Clin Exp Rheumatol. 2005;23(2):231-4.

    PubMed  CAS  Google Scholar 

  69. Washino S, Hirai M, Matsuzaki A, Kobayashi Y. (18)F-Fluorodeoxyglucose positron emission tomography for diagnosis and monitoring of idiopathic retroperitoneal fibrosis associated with mediastinal fibrosis. Ann Nucl Med. 2010;24(3):225-9.

    Article  PubMed  Google Scholar 

  70. Yilmaz S, Tan YZ, Ozhan M, Halac M, Asa S, Sönmezoglu K. FDG PET/CT in monitoring treatment of retroperitoneal fibrosis. Rev Esp Med Nucl Imagen Mol. 2012;31(6):338-9.

    PubMed  CAS  Google Scholar 

  71. Ruhlmann V, Poeppel TD, Brandt AS, Grüneisen J, Ruhlmann M, Theysohn JM, et al. (18)F-FDG PET/MRI evaluation of retroperitoneal fibrosis: a simultaneous multiparametric approach for diagnosing active disease. Eur J Nucl Med Mol Imaging. 2016;43(9):1646-52.

    Article  PubMed  CAS  Google Scholar 

  72. Pan Q, Luo Y, Zhang W. Idiopathic Retroperitoneal Fibrosis With Intense Uptake of 68Ga-Fibroblast Activation Protein Inhibitor and 18F-FDG. Clin Nucl Med. 2021;46(2):175-6.

    Article  PubMed  Google Scholar 

  73. Einspieler I, Henninger M, Mergen V, Wendorff H, Haller B, Beyer LP, et al. 18F-FDG PET/MRI compared with clinical and serological markers for monitoring disease activity in patients with aortitis and chronic periaortitis. Clin Exp Rheumatol. 2020;38 Suppl 124(2):99–106.

  74. Einspieler I, Henninger M, Mergen V, Wendorff H, Haller B, Eiber M, et al. Three-dimensional fat-saturated T1-weighted Cartesian volumetric interpolated breath-hold examination (VIBE) for the diagnosis of aortitis in patients with suspected large vessel vasculitis: a comparative study with 18F-FDG PET applying fully integrated PET/MRI. Clinical Radiology. 2019;74(9):731. e11-. e19.

  75. Laurent C, Ricard L, Fain O, Buvat I, Adedjouma A, Soussan M, et al. PET/MRI in large-vessel vasculitis: clinical value for diagnosis and assessment of disease activity. Scientific reports. 2019;9(1):12388.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Padoan R, Crimì F, Felicetti M, Padovano F, Lacognata C, Stramare R, et al. Fully integrated [18F] FDG PET/MR in large vessel vasculitis. The quarterly journal of nuclear medicine and molecular imaging: official publication of the Italian Association of Nuclear Medicine (AIMN)[and] the International Association of Radiopharmacology (IAR),[and] Section of the Society of. 2019;66(3):272–9.

  77. Kuzniar M, Tegler G, Wanhainen A, Ahlström H, Mani K, Hansen T. Feasibility of Assessing Inflammation in Asymptomatic Abdominal Aortic Aneurysms With Integrated 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance Imaging. Eur J Vasc Endovasc Surg. 2020;59(3):464-71.

    Article  PubMed  Google Scholar 

  78. Molacek J, Baxa J, Opatrný V, Treska V, Hollan I, Ferda J. Benefits of hybrid methods (PET/CT, PET MRI) in the diagnosis of abdominal aortic pathology. Rozhl Chir. 2019;98(11):450-6.

    PubMed  CAS  Google Scholar 

  79. Baratto L, Park SY, Hatami N, Gulaka P, Vasanawala S, Yohannan TK, et al. (18)F-florbetaben whole-body PET/MRI for evaluation of systemic amyloid deposition. EJNMMI Res. 2018;8(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Navin.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartlett, D.J., Takahashi, H., Bach, C.R. et al. Potential applications of PET/MRI in non-oncologic conditions within the abdomen and pelvis. Abdom Radiol 48, 3624–3633 (2023). https://doi.org/10.1007/s00261-023-03922-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-03922-0

Keywords

Navigation