Skip to main content

Advertisement

Log in

Multiparametric MR assessment of liver fat, iron, and fibrosis: a concise overview of the liver “Triple Screen”

  • Review
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Chronic liver disease (CLD) is a common source of morbidity and mortality worldwide. Non-alcoholic fatty liver disease (NAFLD) serves as a major cause of CLD with a rising annual prevalence. Additionally, iron overload can be both a cause and effect of CLD with a negative synergistic effect when combined with NAFLD. The development of state-of-the-art multiparametric MR solutions has led to a change in the diagnostic paradigm in CLD, shifting from traditional liver biopsy to innovative non-invasive methods for providing accurate and reliable detection and quantification of the disease burden. Novel imaging biomarkers such as MRI-PDFF for fat, R2 and R2* for iron, and liver stiffness for fibrosis provide important information for diagnosis, surveillance, risk stratification, and treatment. In this article, we provide a concise overview of the MR concepts and techniques involved in the detection and quantification of liver fat, iron, and fibrosis including their relative strengths and limitations and discuss a practical abbreviated MR protocol for clinical use that integrates these three MR biomarkers into a single simplified MR assessment. Multiparametric MR techniques provide accurate and reliable non-invasive detection and quantification of liver fat, iron, and fibrosis. These techniques can be combined in a single abbreviated MR “Triple Screen” assessment to offer a more complete metabolic imaging profile of CLD.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Paik JM, Golabi P, Younossi Y, Mishra A, Younossi ZM. Changes in the Global Burden of Chronic Liver Diseases from 2012 to 2017: The Growing Impact of NAFLD. Hepatology (Baltimore, MD). 2020;72(5):1605–16.

    Article  PubMed  Google Scholar 

  2. Welle CL, Olson MC, Reeder SB, Venkatesh SK. Magnetic Resonance Imaging of Liver Fibrosis, Fat, and Iron. Radiologic Clinics of North America. 2022;60(5):705–16.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Starekova J, Reeder SB. Liver fat quantification: where do we stand? Abdominal radiology (New York). 2020;45(11):3386–99.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Byrne CD, Targher G. NAFLD: a multisystem disease. Journal of Hepatology. 2015;62(1 Suppl):S47–64.

    Article  PubMed  Google Scholar 

  5. Estes C, Razavi H, Loomba R, Younossi Z, Sanyal AJ. Modeling the epidemic of nonalcoholic fatty liver disease demonstrates an exponential increase in burden of disease. Hepatology (Baltimore, MD). 2018;67(1):123–33.

    Article  CAS  PubMed  Google Scholar 

  6. Perumpail BJ, Khan MA, Yoo ER, Cholankeril G, Kim D, Ahmed A. Clinical epidemiology and disease burden of nonalcoholic fatty liver disease. World Journal of Gastroenterology. 2017;23(47):8263–76.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology (Baltimore, MD). 2016;64(1):73–84.

    Article  PubMed  Google Scholar 

  8. Chitturi S, George J. Interaction of iron, insulin resistance, and nonalcoholic steatohepatitis. Current Gastroenterology Reports. 2003;5(1):18–25.

    Article  PubMed  Google Scholar 

  9. Bonkovsky HL, Jawaid Q, Tortorelli K, et al. Non-alcoholic steatohepatitis and iron: increased prevalence of mutations of the HFE gene in non-alcoholic steatohepatitis. Journal of Hepatology. 1999;31(3):421–9.

    Article  CAS  PubMed  Google Scholar 

  10. Nelson JE, Wilson L, Brunt EM, et al. Relationship between the pattern of hepatic iron deposition and histological severity in nonalcoholic fatty liver disease. Hepatology (Baltimore, MD). 2011;53(2):448–57.

    Article  CAS  PubMed  Google Scholar 

  11. Corradini E, Pietrangelo A. Iron and steatohepatitis. Journal of Gastroenterology and Hepatology. 2012;27 Suppl 2:42–6.

    Article  CAS  PubMed  Google Scholar 

  12. Ellis EL, Mann DA. Clinical evidence for the regression of liver fibrosis. Journal of Hepatology. 2012;56(5):1171–80.

    Article  PubMed  Google Scholar 

  13. Snowdon VK, Fallowfield JA. Models and mechanisms of fibrosis resolution. Alcoholism, Clinical and Experimental Research. 2011;35(5):794–9.

    Article  CAS  PubMed  Google Scholar 

  14. Ratziu V, Charlotte F, Heurtier A, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128(7):1898–906.

    Article  PubMed  Google Scholar 

  15. Bravo AA, Sheth SG, Chopra S. Liver biopsy. The New England Journal of Medicine. 2001;344(7):495–500.

    Article  CAS  PubMed  Google Scholar 

  16. Thomaides-Brears HB, Lepe R, Banerjee R, Duncker C. Multiparametric MR mapping in clinical decision-making for diffuse liver disease. Abdominal Radiology (New York). 2020;45(11):3507–22.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chin JL, Pavlides M, Moolla A, Ryan JD. Non-invasive Markers of Liver Fibrosis: Adjuncts or Alternatives to Liver Biopsy? Frontiers in Pharmacology. 2016;7:159.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association. 2009;7(10):1104–12.

    Article  CAS  PubMed  Google Scholar 

  19. EASL-ALEH Clinical Practice Guidelines: Non-invasive tests for evaluation of liver disease severity and prognosis. Journal of Hepatology. 2015;63(1):237–64.

  20. Curtis WA, Fraum TJ, An H, Chen Y, Shetty AS, Fowler KJ. Quantitative MRI of Diffuse Liver Disease: Current Applications and Future Directions. Radiology. 2019;290(1):23–30.

    Article  PubMed  Google Scholar 

  21. Moura Cunha G, Navin PJ, Fowler KJ, Venkatesh SK, Ehman RL, Sirlin CB. Quantitative magnetic resonance imaging for chronic liver disease. The British Journal of Radiology. 2021;94(1121):20201377.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. Journal of Magnetic Resonance Imaging: JMRI. 2012;36(5):1011–4.

    Article  PubMed  Google Scholar 

  23. Ajmera V, Loomba R. Imaging biomarkers of NAFLD, NASH, and fibrosis. Molecular Metabolism. 2021;50:101167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taouli B, Alves FC. Imaging biomarkers of diffuse liver disease: current status. Abdominal Radiology (New York). 2020;45(11):3381–5.

    Article  PubMed  Google Scholar 

  25. Ando Y, Jou JH. Nonalcoholic Fatty Liver Disease and Recent Guideline Updates. Clinical Liver Disease. 2021;17(1):23–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Starekova J, Hernando D, Pickhardt PJ, Reeder SB. Quantification of Liver Fat Content with CT and MRI: State of the Art. Radiology. 2021:204288.

  27. Wong RJ, Aguilar M, Cheung R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148(3):547–55.

    Article  PubMed  Google Scholar 

  28. Roldan-Valadez E, Favila R, Martínez-López M, Uribe M, Ríos C, Méndez-Sánchez N. In vivo 3 T spectroscopic quantification of liver fat content in nonalcoholic fatty liver disease: Correlation with biochemical method and morphometry. Journal of Hepatology. 2010;53(4):732–7.

    Article  CAS  PubMed  Google Scholar 

  29. van Werven JR, Schreuder TC, Aarts EO, et al. Hepatic steatosis in morbidly obese patients undergoing gastric bypass surgery: assessment with open-system 1H-MR spectroscopy. AJR American Journal of Roentgenology. 2011;196(6):W736–42.

    Article  PubMed  Google Scholar 

  30. McPherson S, Jonsson JR, Cowin GJ, et al. Magnetic resonance imaging and spectroscopy accurately estimate the severity of steatosis provided the stage of fibrosis is considered. Journal of Hepatology. 2009;51(2):389–97.

    Article  PubMed  Google Scholar 

  31. Qayyum A. MR spectroscopy of the liver: principles and clinical applications. Radiographics: A Review Publication of the Radiological Society of North America, Inc. 2009;29(6):1653–64.

    Article  PubMed  Google Scholar 

  32. Dixon WT. Simple proton spectroscopic imaging. Radiology. 1984;153(1):189–94.

    Article  CAS  PubMed  Google Scholar 

  33. Dyke JP. Quantitative MRI Proton Density Fat Fraction: A Coming of Age. Radiology. 2021;298(3):652–3.

    Article  PubMed  Google Scholar 

  34. Reeder SB, Sirlin CB. Quantification of liver fat with magnetic resonance imaging. Magnetic Resonance Imaging Clinics of North America. 2010;18(3):337–57, ix.

  35. Idilman IS, Keskin O, Celik A, et al. A comparison of liver fat content as determined by magnetic resonance imaging-proton density fat fraction and MRS versus liver histology in non-alcoholic fatty liver disease. Acta radiologica (Stockholm, Sweden: 1987). 2016;57(3):271–8.

    Article  PubMed  Google Scholar 

  36. Kang BK, Kim M, Song SY, Jun DW, Jang K. Feasibility of modified Dixon MRI techniques for hepatic fat quantification in hepatic disorders: validation with MRS and histology. The British Journal of Radiology. 2018;91(1089):20170378.

    PubMed  Google Scholar 

  37. Kukuk GM, Hittatiya K, Sprinkart AM, et al. Comparison between modified Dixon MRI techniques, MR spectroscopic relaxometry, and different histologic quantification methods in the assessment of hepatic steatosis. European Radiology. 2015;25(10):2869–79.

    Article  PubMed  Google Scholar 

  38. Zhao YZ, Gan YG, Zhou JL, et al. Accuracy of multi-echo Dixon sequence in quantification of hepatic steatosis in Chinese children and adolescents. World Journal of Gastroenterology. 2019;25(12):1513–23.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boudinaud C, Abergel A, Joubert-Zakeyh J, et al. Quantification of steatosis in alcoholic and nonalcoholic fatty liver disease: Evaluation of four MR techniques versus biopsy. European Journal of Radiology. 2019;118:169–74.

    Article  PubMed  Google Scholar 

  40. Gu J, Liu S, Du S, et al. Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis. European Radiology. 2019;29(7):3564–73.

    Article  PubMed  Google Scholar 

  41. Yokoo T, Serai SD, Pirasteh A, et al. Linearity, Bias, and Precision of Hepatic Proton Density Fat Fraction Measurements by Using MR Imaging: A Meta-Analysis. Radiology. 2018;286(2):486–98.

    Article  PubMed  Google Scholar 

  42. Artz NS, Haufe WM, Hooker CA, et al. Reproducibility of MR-based liver fat quantification across field strength: Same-day comparison between 1.5 T and 3 T in obese subjects. Journal of Magnetic Resonance Imaging: JMRI. 2015;42(3):811–7.

    Article  PubMed  Google Scholar 

  43. Sousa L, Oliveira MM, Pessôa MTC, Barbosa LA. Iron overload: Effects on cellular biochemistry. Clinica chimica acta; International Journal of Clinical Chemistry. 2020;504:180–9.

    Article  CAS  PubMed  Google Scholar 

  44. Milic S, Mikolasevic I, Orlic L, et al. The Role of Iron and Iron Overload in Chronic Liver Disease. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2016;22:2144–51.

    Article  CAS  PubMed  Google Scholar 

  45. Labranche R, Gilbert G, Cerny M, et al. Liver Iron Quantification with MR Imaging: A Primer for Radiologists. Radiographics: A Review Publication of the Radiological Society of North America, Inc. 2018;38(2):392–412.

    Article  PubMed  Google Scholar 

  46. Daniłowicz-Szymanowicz L, Świątczak M, Sikorska K, Starzyński RR, Raczak A, Lipiński P. Pathogenesis, Diagnosis, and Clinical Implications of Hereditary Hemochromatosis-The Cardiological Point of View. Diagnostics (Basel, Switzerland). 2021;11(7).

  47. Aigner E, Weiss G, Datz C. Dysregulation of iron and copper homeostasis in nonalcoholic fatty liver. World Journal of Hepatology. 2015;7(2):177–88.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Dongiovanni P, Fracanzani AL, Fargion S, Valenti L. Iron in fatty liver and in the metabolic syndrome: a promising therapeutic target. Journal of Hepatology. 2011;55(4):920–32.

    Article  CAS  PubMed  Google Scholar 

  49. Georgopoulou U, Dimitriadis A, Foka P, Karamichali E, Mamalaki A. Hepcidin and the iron enigma in HCV infection. Virulence. 2014;5(4):465–76.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Rulyak SJ, Eng SC, Patel K, McHutchison JG, Gordon SC, Kowdley KV. Relationships between hepatic iron content and virologic response in chronic hepatitis C patients treated with interferon and ribavirin. The American Journal of Gastroenterology. 2005;100(2):332–7.

    Article  CAS  PubMed  Google Scholar 

  51. Kowdley KV, Belt P, Wilson LA, et al. Serum ferritin is an independent predictor of histologic severity and advanced fibrosis in patients with nonalcoholic fatty liver disease. Hepatology (Baltimore, MD). 2012;55(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  52. Queiroz-Andrade M, Blasbalg R, Ortega CD, et al. MR imaging findings of iron overload. Radiographics: A Review Publication of the Radiological Society of North America, Inc. 2009;29(6):1575–89.

    Article  PubMed  Google Scholar 

  53. Low G, Huang G, Dharmana H, Moloo Z, Fu W. Re: PC Adams. Genetic testing for hemochromatosis: Diagnostic or confirmatory test for iron overload? Can J Gastroenterol Hepatol 2015;29(1):15–6. Canadian Journal of Gastroenterology & Hepatology. 2015;29(3):165–6.

  54. Gandon Y, Olivié D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet (London, England). 2004;363(9406):357–62.

    Article  CAS  PubMed  Google Scholar 

  55. Henninger B, Alustiza J, Garbowski M, Gandon Y. Practical guide to quantification of hepatic iron with MRI. European Radiology. 2020;30(1):383–93.

    Article  PubMed  Google Scholar 

  56. Alústiza JM, Artetxe J, Castiella A, et al. MR quantification of hepatic iron concentration. Radiology. 2004;230(2):479–84.

    Article  PubMed  Google Scholar 

  57. Rose C, Vandevenne P, Bourgeois E, Cambier N, Ernst O. Liver iron content assessment by routine and simple magnetic resonance imaging procedure in highly transfused patients. European Journal of Haematology. 2006;77(2):145–9.

    Article  CAS  PubMed  Google Scholar 

  58. Hernando D, Kühn JP, Mensel B, et al. R2* estimation using “in-phase” echoes in the presence of fat: the effects of complex spectrum of fat. Journal of Magnetic Resonance Imaging: JMRI. 2013;37(3):717–26.

    Article  PubMed  Google Scholar 

  59. St Pierre TG, Clark PR, Chua-anusorn W, et al. Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood. 2005;105(2):855–61.

    Article  CAS  PubMed  Google Scholar 

  60. Wood JC, Enriquez C, Ghugre N, et al. MRI R2 and R2* mapping accurately estimates hepatic iron concentration in transfusion-dependent thalassemia and sickle cell disease patients. Blood. 2005;106(4):1460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kirk P, He T, Anderson LJ, et al. International reproducibility of single breathhold T2* MR for cardiac and liver iron assessment among five thalassemia centers. Journal of Magnetic Resonance Imaging: JMRI. 2010;32(2):315–9.

    Article  PubMed  Google Scholar 

  62. Henninger B, Zoller H, Rauch S, et al. R2* relaxometry for the quantification of hepatic iron overload: biopsy-based calibration and comparison with the literature. RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin. 2015;187(6):472–9.

    Article  CAS  PubMed  Google Scholar 

  63. Meloni A, Rienhoff HY, Jr., Jones A, Pepe A, Lombardi M, Wood JC. The use of appropriate calibration curves corrects for systematic differences in liver R2* values measured using different software packages. British Journal of Haematology. 2013;161(6):888–91.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tanner MA, He T, Westwood MA, Firmin DN, Pennell DJ. Multi-center validation of the transferability of the magnetic resonance T2* technique for the quantification of tissue iron. Haematologica. 2006;91(10):1388–91.

    CAS  PubMed  Google Scholar 

  65. Yin M, Glaser KJ, Talwalkar JA, Chen J, Manduca A, Ehman RL. Hepatic MR Elastography: Clinical Performance in a Series of 1377 Consecutive Examinations. Radiology. 2016;278(1):114–24.

    Article  PubMed  Google Scholar 

  66. Everhart JE, Ruhl CE. Burden of digestive diseases in the United States Part III: Liver, biliary tract, and pancreas. Gastroenterology. 2009;136(4):1134–44.

    Article  PubMed  Google Scholar 

  67. Pinzani M, Rombouts K, Colagrande S. Fibrosis in chronic liver diseases: diagnosis and management. Journal of Hepatology. 2005;42 Suppl(1):S22–36.

  68. Cheemerla S, Balakrishnan M. Global Epidemiology of Chronic Liver Disease. Clinical Liver Disease. 2021;17(5):365–70.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Muthupillai R, Lomas DJ, Rossman PJ, Greenleaf JF, Manduca A, Ehman RL. Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science (New York, NY). 1995;269(5232):1854–7.

    Article  CAS  Google Scholar 

  70. Low G, Kruse SA, Lomas DJ. General review of magnetic resonance elastography. World Journal of Radiology. 2016;8(1):59–72.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hoodeshenas S, Yin M, Venkatesh SK. Magnetic Resonance Elastography of Liver: Current Update. Topics in Magnetic Resonance Imaging: TMRI. 2018;27(5):319–33.

    Article  PubMed  Google Scholar 

  72. Guglielmo FF, Venkatesh SK, Mitchell DG. Liver MR Elastography Technique and Image Interpretation: Pearls and Pitfalls. Radiographics: A Review Publication of the Radiological Society of North America, Inc. 2019;39(7):1983–2002.

    Article  PubMed  Google Scholar 

  73. Hsu C, Caussy C, Imajo K, et al. Magnetic Resonance vs Transient Elastography Analysis of Patients With Nonalcoholic Fatty Liver Disease: A Systematic Review and Pooled Analysis of Individual Participants. Clinical Gastroenterology and Hepatology: the Official Clinical Practice Journal of the American Gastroenterological Association. 2019;17(4):630–7.e8.

    Article  PubMed  Google Scholar 

  74. Ehman RL. re: Comparison of Technical Failure of MR Elastography for Measuring Liver Stiffness Between Gradient-Recalled Echo and Spin–Echo Echo-Planar Imaging: A Systematic Review and Meta-Analysis. Journal of Magnetic Resonance Imaging: JMRI. 2020;51(4):1103–4.

    Article  PubMed  Google Scholar 

  75. Singh S, Venkatesh SK, Wang Z, et al. Diagnostic performance of magnetic resonance elastography in staging liver fibrosis: a systematic review and meta-analysis of individual participant data. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association. 2015;13(3):440–51.e6.

    Article  PubMed  Google Scholar 

  76. Su LN, Guo SL, Li BX, Yang P. Diagnostic value of magnetic resonance elastography for detecting and staging of hepatic fibrosis: a meta-analysis. Clinical Radiology. 2014;69(12):e545–52.

    Article  PubMed  Google Scholar 

  77. Wagner M, Corcuera-Solano I, Lo G, et al. Technical Failure of MR Elastography Examinations of the Liver: Experience from a Large Single-Center Study. Radiology. 2017;284(2):401–12.

    Article  PubMed  Google Scholar 

  78. Hines CD, Bley TA, Lindstrom MJ, Reeder SB. Repeatability of magnetic resonance elastography for quantification of hepatic stiffness. Journal of Magnetic Resonance Imaging: JMRI. 2010;31(3):725–31.

    Article  PubMed  Google Scholar 

  79. Lee Y, Lee JM, Lee JE, et al. MR elastography for noninvasive assessment of hepatic fibrosis: reproducibility of the examination and reproducibility and repeatability of the liver stiffness value measurement. Journal of Magnetic Resonance Imaging: JMRI. 2014;39(2):326–31.

    Article  PubMed  Google Scholar 

  80. Shi Y, Guo Q, Xia F, Sun J, Gao Y. Short- and midterm repeatability of magnetic resonance elastography in healthy volunteers at 3.0 T. Magnetic Resonance Imaging. 2014;32(6):665–70.

    Article  PubMed  Google Scholar 

  81. Serai SD, Obuchowski NA, Venkatesh SK, et al. Repeatability of MR Elastography of Liver: A Meta-Analysis. Radiology. 2017;285(1):92–100.

    Article  PubMed  Google Scholar 

  82. Trout AT, Serai S, Mahley AD, et al. Liver Stiffness Measurements with MR Elastography: Agreement and Repeatability across Imaging Systems, Field Strengths, and Pulse Sequences. Radiology. 2016;281(3):793–804.

    Article  PubMed  Google Scholar 

  83. Serai SD, Yin M, Wang H, Ehman RL, Podberesky DJ. Cross-vendor validation of liver magnetic resonance elastography. Abdominal Imaging. 2015;40(4):789–94.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Yasar TK, Wagner M, Bane O, et al. Interplatform reproducibility of liver and spleen stiffness measured with MR elastography. Journal of Magnetic Resonance Imaging: JMRI. 2016;43(5):1064–72.

    Article  PubMed  Google Scholar 

  85. Kim HJ, Kim B, Yu HJ, et al. Reproducibility of hepatic MR elastography across field strengths, pulse sequences, scan intervals, and readers. Abdominal Radiology (New York). 2020;45(1):107–15.

    Article  PubMed  Google Scholar 

  86. Cunha GM, Villela-Nogueira CA, Bergman A, Lobo Lopes FPP. Abbreviated mpMRI protocol for diffuse liver disease: a practical approach for evaluation and follow-up of NAFLD. Abdominal Radiology (New York). 2018;43(9):2340–50.

    Article  PubMed  Google Scholar 

  87. Allen AM, Shah VH, Therneau TM, et al. Multiparametric Magnetic Resonance Elastography Improves the Detection of NASH Regression Following Bariatric Surgery. Hepatology Communications. 2020;4(2):185–92.

    Article  PubMed  Google Scholar 

  88. Serai SD, Trout AT. Can MR elastography be used to measure liver stiffness in patients with iron overload? Abdominal Radiology (New York). 2019;44(1):104–9.

    Article  PubMed  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitchell P. Wilson.

Ethics declarations

Conflict of interest

None to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Low, G., Ferguson, C., Locas, S. et al. Multiparametric MR assessment of liver fat, iron, and fibrosis: a concise overview of the liver “Triple Screen”. Abdom Radiol 48, 2060–2073 (2023). https://doi.org/10.1007/s00261-023-03887-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-03887-0

Keywords

Navigation