Skip to main content

Advertisement

Log in

Evaluating the renal mild tubulointerstitial damage and renal function in IgAN patients: a comparative study based on diffusion kurtosis imaging and diffusion tensor imaging

  • Kidneys, Ureters, Bladder, Retroperitoneum
  • Published:
Abdominal Radiology Aims and scope

Abstract

Objective

To compare the performance of 3.0 T magnetic resonance diffusion kurtosis imaging (DKI) and diffusion tensor imaging (DTI) in evaluation of the degree of tubulointerstitial damage and renal function in Immunoglobulin A Nephropathy (IgAN) patients.

Methods

Both DKI and DTI were performed in 40 IgAN patients and 17 healthy volunteers. IgAN patients were divided into two groups according to tubulointerstitial lesion score: Mild injury group, n = 24; Moderate-severe injury group, n = 16. DKI characteristic parameters [mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr)] and DTI parameters [fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (Da), radial diffusivity (Dr)] of renal cortex and medulla were measured and compared among different groups. Correlations between DKI, DTI parameters and clinicopathological characteristics were assessed. Diagnostic performance of DKI and DTI to evaluate tubulointerstitial damage of IgAN was compared.

Results

Cortical MK, Kr, Da and parenchymal Ka significantly differed among three groups (P < 0.05). Cortical MK, Kr, Ka were negatively correlated with estimated glomerular filtration rate (eGFR) (MK: r = − 0.613; Kr: r = − 0.539; Ka: r = − 0.664) and positively correlated with tubulointerstitial lesion score (MK: r = 0.655; Kr: r = 0.577; Ka: r = 0.661) (all P < 0.001). Lower correlation coefficient was found among cortical FA, MD, Dr and eGFR, tubulointerstitial lesion score (all|r|< 0.350). The AUCs of DKI and DTI parameters for differentiating Mild injury group from control group were (cortical MK 0.822, cortical Ka 0.816; cortical FA 0.515, cortical MD 0.714) and for differentiating Mild injury group from Moderate-severe injury group were (cortical MK 0.813, cortical Ka 0.831; medulla FA 0.784, medulla MD 0.586).

Conclusion

Compared with DTI, DKI was more sensitive and accurate to probe the renal function and the tubulointerstitial damage of IgAN, especially the mild tubulointerstitial damage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Hammer N, Martin PY, Moll S, De Seigneux S (2021) Nouveautés dans la néphropathie à IgA [IgA nephropathy : update]. Rev Med Suisse 17(727):373-377.

    PubMed  Google Scholar 

  2. Goto M, Wakai K, Kawamura T, Ando M, Endoh M, Tomino Y (2009) A scoring system to predict renal outcome in IgA nephropathy: a nationwide 10-year prospective cohort study. Nephrol Dial Transplant 24(10):3068-74. https://doi.org/10.1093/ndt/gfp273.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhu X, Li H, Liu Y, You J, Qu Z, Yuan S, Peng Y, Liu F, Liu H (2017) Tubular atrophy/interstitial fibrosis scores of Oxford classification combinded with proteinuria level at biopsy provides earlier risk prediction in lgA nephropathy. Sci Rep 7(1):1100. https://doi.org/10.1038/s41598-017 -01223-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Walsh M, Sar A, Lee D, Yilmaz S, Benediktsson H, Manns B, Hemmelgarn B (2010) Histopathologic features aid in predicting risk for progression of IgA nephropathy. Clin J Am Soc Nephrol 5(3):425-30. https://doi.org/10.2215/CJN.06530909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de Jong PE, Coresh J; Chronic Kidney Disease Prognosis Consortium (2011) Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta-analysis of general and high-risk population cohorts. Kidney Int 80(1):93-104. https://doi.org/10.1038/ki.2010.531..

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pokhrel A, Agrawal RK, Baral A, Rajbhandari A, Hada R (2018) Percutaneous Renal Biopsy: Comparison of Blind and Real-time Ultrasound Guided Technique. J Nepal Health Res Counc 16(1):66-72.

    Article  PubMed  Google Scholar 

  7. Zhou H, Zhang J, Zhang XM, Chen T, Hu J, Jing Z, Jian S (2021) Noninvasive evaluation of early diabetic nephropathy using diffusion kurtosis imaging: an experimental study. Eur Radiol 31(4):2281-2288. https://doi.org/10.1007/s00330-020-07322-6.

    Article  PubMed  Google Scholar 

  8. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66(1):259-67. https://doi.org/10.1016/S0006-3495(94)80775-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu Z, Xu Y, Zhang J, Zhen J, Wang R, Cai S, Yuan X, Liu Q (2015) Chronic kidney disease: pathological and functional assessment with diffusion tensor imaging at 3T MR. Eur Radiol 25(3):652-60. https://doi.org/10.1007/s00330-014-3461-x.

    Article  PubMed  Google Scholar 

  10. Tuch DS, Reese TG, Wiegell MR, Wedeen VJ (2003) Diffusion MRI of complex neural architecture. Neuron 40(5):885-95. https://doi.org/10.1016/s0896-6273(03)00758-x.

    Article  CAS  PubMed  Google Scholar 

  11. Jensen JH, Helpern JA (2010) MRI quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 23(7):698-710. https://doi.org/10.1002/nbm.1518.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhao J, Wang YL, Li XB, Hu MS, Li ZH, Song YK, Wang JY, Tian YS, Liu DW, Yan X, Jiang L, Yang ZY, Chu JP (2019) Comparative analysis of the diffusion kurtosis imaging and diffusion tensor imaging in grading gliomas, predicting tumour cell proliferation and IDH-1 gene mutation status. J Neurooncol 141(1):195-203. https://doi.org/10.1007/s11060-018-03025-7.

    Article  CAS  PubMed  Google Scholar 

  13. Ye J, Xu Q, Wang SA, Zheng J, Dou WQ (2020) Quantitative Evaluation of Intravoxel Incoherent Motion and Diffusion Kurtosis Imaging in Assessment of Pathological Grade of Clear Cell Renal Cell Carcinoma. Acad Radiol 27(7):e176-e182. https://doi.org/10.1016/j.acra.2019.10.010.

    Article  PubMed  Google Scholar 

  14. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K (2005) Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 53(6):1432-40. https://doi.org/10.1002/mrm.20508.

    Article  PubMed  Google Scholar 

  15. Cao J, Luo X, Zhou Z, Duan Y, Xiao L, Sun X, Shang Q, Gong X, Hou Z, Kong D, He B (2020) Comparison of diffusion-weighted imaging mono-exponential mode with diffusion kurtosis imaging for predicting pathological grades of clear cell renal cell carcinoma. Eur J Radiol 130:109195. https://doi.org/10.1016/j.ejrad.2020.109195.

  16. Kidney Disease: Improving Global Outcomes (KDIGO) Glomerular Diseases Work Group (2021) KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases. Kidney Int 100(4S):S1-S276. https://doi.org/10.1016/j.kint.2021.05.021.

    Article  Google Scholar 

  17. Feng Q, Ma Z, Wu J, Fang W (2015) DTI for the assessment of disease stage in patients with glomerulonephritis--correlation with renal histology. Eur Radiol 25(1):92–8. 10.10 07/s0033 0–014–3336–1.

  18. Liu Y, Zhang GM, Peng X, Wen Y, Ye W, Zheng K, Li X, Sun H, Chen L (2018) Diffusional kurtosis imaging in assessing renal function and pathology of IgA nephropathy: a preliminary clinical study. Clin Radiol 73(9):818-826. https://doi.org/10.1016/j.crad.2018.05.012.

    Article  CAS  PubMed  Google Scholar 

  19. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, Coresh J; CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150(9):604-12. https://doi.org/10.7326/0003-4819-150-9-200905050-00006.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mao W, Ding Y, Ding X, Fu C, Zeng M, Zhou J (2021) Diffusion kurtosis imaging for the assessment of renal fibrosis of chronic kidney disease: A preliminary study. Magn Reson Imaging 80:113-120. https://doi.org/10.1016/j.mri.2021.05.002.

    Article  CAS  PubMed  Google Scholar 

  21. Katafuchi R, Kiyoshi Y, Oh Y, Uesugi N, Ikeda K, Yanase T, Fujimi S (1998) Glomerular score as a prognosticator in IgA nephropathy: its usefulness and limitation. Clin Nephrol 49(1):1-8.

    CAS  PubMed  Google Scholar 

  22. Cui Y, Yang X, Du X, Zhuo Z, Xin L, Cheng X (2018) Whole-tumour diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: Correlation with clinical pathologic prognostic factors. Eur Radiol 28(4):1485-1494. https://doi.org/10.1007/s00330-017-5094-3.

    Article  PubMed  Google Scholar 

  23. Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis - a technical review. NMR Biomed 15(7-8):456-67. https://doi.org/https://doi.org/10.1002/nbm.783.

    Article  PubMed  Google Scholar 

  24. Tang X, Wen Q, Zhou Q, Yang Q, Chen W, Yu X (2022) Prognostic significance of the extent of tubulointerstitial lesions in patients with IgA nephropathy. Int Urol Nephrol Sep 1. https://doi.org/10.1007/s11255-022-03286-2.

  25. Liang P, Li S, Yuan G, He K, Li A, Hu D, Li Z, Xu C (2022) Noninvasive assessment of clinical and pathological characteristics of patients with IgA nephropathy by diffusion kurtosis imaging. Insights Imaging 13(1):18. https://doi.org/10.1186/s13244-022-01158-y.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kriz W (1981) Structural organization of the renal medulla: comparative and functional aspects. Am J Physiol 241(1):R3-16. https://doi.org/10.1152/ajpregu.1981.241.1.R3

    Article  CAS  PubMed  Google Scholar 

  27. Kanki A, Ito K, Tamada T, Noda Y, Yamamoto A, Tanimoto D, Sato T, Higaki A (2013) Corticomedullary differentiation of the kidney: evaluation with noncontrast-enhanced steady-state free precession (SSFP) MRI with time-spatial labeling inversion pulse (time-SLIP). J Magn Reson Imaging 37(5):1178-81. https://doi.org/10.1002/jmri.23909.

    Article  PubMed  Google Scholar 

  28. Turner CM, Arulkumaran N, Singer M, Unwin RJ, Tam FW (2014) Is the inflammasome a potential therapeutic target in renal disease? BMC Nephrol 15:21. 10.1186/ 1471-2369-15-21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hostetter TH, Olson JL, Rennke HG, Venkatachalam MA, Brenner BM (1981) Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol 241(1):F85–93. https://doi.org/10.1152/ajprenal.1981.241.1.F85

    Article  CAS  PubMed  Google Scholar 

  30. Mao W, Ding Y, Ding X, Wang Y, Fu C, Zeng M, Zhou J (2021) Pathological assessment of chronic kidney disease with DWI: Is there an added value for diffusion kurtosis imaging? J Magn Reson Imaging 54(2):508-517. https://doi.org/10.1002/jmri.27569.

    Article  PubMed  Google Scholar 

  31. Wu G, Zhao Z, Yao Q, Kong W, Xu J, Zhang J, Liu G, Dai Y (2018) The Study of Clear Cell Renal Cell Carcinoma with MR Diffusion Kurtosis Tensor Imaging and Its Histopathologic Correlation. Acad Radiol 25(4):430-438. https://doi.org/10.1016/j.acra.2017.10.016.

    Article  PubMed  Google Scholar 

  32. Bissinger RL (1995) Renal physiology Part 1: Structure and function. Neonatal Netw 14(4):9-20.

    CAS  PubMed  Google Scholar 

  33. Qian Q (2017) Inflammation: A Key Contributor to the Genesis and Progression of Chronic Kidney Disease. Contrib Nephrol 191:72-83. https://doi.org/10.1159/000479257

    Article  CAS  PubMed  Google Scholar 

  34. Khan S, Cleveland RP, Koch CJ, Schelling JR (1999) Hypoxia induces renal tubular epithelial cell apoptosis in chronic renal disease. Lab Invest 79(9):1089-99.

    CAS  PubMed  Google Scholar 

  35. Schelling JR (2016) Tubular atrophy in the pathogenesis of chronic kidney disease progression. Pediatr Nephrol 31(5):693-706. https://doi.org/10.1007/s00467-015-3169-4.

    Article  PubMed  Google Scholar 

  36. Wu HH, Jia HR, Zhang Y, Liu L, Xu DB, Sun HR (2015) Monitoring the progression of renal fibrosis by T2-weighted signal intensity and diffusion weighted magnetic resonance imaging in cisplatin induced rat models. Chin Med J (Engl) 128(5):626-31. https://doi.org/10.4103/0366-6999.151660.

    Article  PubMed  Google Scholar 

  37. Bunnag S, Einecke G, Reeve J, Jhangri GS, Mueller TF, Sis B, Hidalgo LG, Mengel M, Kayser D, Kaplan B, Halloran PF (2009) Molecular correlates of renal function in kidney transplant biopsies. J Am Soc Nephrol 20(5):1149-60. https://doi.org/10.1681/ASN.2008080863.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Eadon MT, Schwantes-An TH, Phillips CL, Roberts AR, Greene CV, Hallab A, Hart KJ, Lipp SN, Perez-Ledezma C, Omar KO, Kelly KJ, Moe SM, Dagher PC, El-Achkar TM, Moorthi RN (2020) Kidney Histopathology and Prediction of Kidney Failure: A Retrospective Cohort Study. Am J Kidney Dis 76(3):350-360. https://doi.org/10.1053/j.ajkd.2019.12.014.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Huang NX, Zou ZY, Xue YJ, Chen HJ (2020) Abnormal cerebral microstructures revealed by diffusion kurtosis imaging in amyotrophic lateral sclerosis. J Magn Reson Imaging 51(2):554-562. https://doi.org/10.1002/jmri.26843.

    Article  PubMed  Google Scholar 

  40. Yuan ZG, Wang ZY, Xia MY, Li FZ, Li Y, Shen Z, Wang XZ (2019) Comparison of diffusion kurtosis imaging versus diffusion weighted imaging in predicting the recurrence of early stage single nodules of hepatocellular carcinoma treated by radiofrequency ablation. Cancer Imaging. 19(1):30. https://doi.org/10.1186/s40644-019-0213-9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Zhejiang Traditional Chinese Medical Scientific Technology (Grant No. 2022ZB240).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. YC designed and performed the research; JY was responsible for renal pathological diagnosis; FC provided technical and financial support; XL collected and recorded the data; HQ and MH performed the data analysis; YZ revised manuscript. JL wrote the original draft and supervised. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jiazhen Lin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

This study was conducted in accordance with the Declaration of Helsinki and was approved by the ethics committee of Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (No. 2018KY002).

Consent to participate

All the patients (or their guardians in the case of minors) provided their written informed consent before data collection.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Yin, J., Hu, M. et al. Evaluating the renal mild tubulointerstitial damage and renal function in IgAN patients: a comparative study based on diffusion kurtosis imaging and diffusion tensor imaging. Abdom Radiol 48, 1350–1362 (2023). https://doi.org/10.1007/s00261-023-03822-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-023-03822-3

Keywords

Navigation