Skip to main content
Log in

Predicting perineural invasion using histogram analysis of zoomed EPI diffusion-weighted imaging in rectal cancer

  • Hollow Organ GI
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the utility of histogram analysis of zoomed EPI diffusion-weighted imaging (DWI) for predicting the perineural invasion (PNI) status of rectal cancer (RC).

Methods

This prospective study evaluated 94 patients diagnosed with histopathologically confirmed RC between July 2020 and July 2021. Patients underwent preoperative rectal magnetic resonance imaging (MRI) examinations, including the zoomed EPI DWI sequence. Ten whole-tumor histogram parameters of each patient were derived from zoomed EPI DWI. Reproducibility was evaluated according to the intra-class correlation coefficient (ICC). The association of the clinico-radiological and histogram features with PNI status was assessed using univariable analysis for trend and multivariable logistic regression analysis with β value calculation. Receiver operating characteristic (ROC) curve analysis was conducted to assess the diagnostic performance.

Results

Forty-two patients exhibited positive PNI. The inter- and intraobserver agreements were excellent for the histogram parameters (all ICCs > 0.80). The maximum (p = 0.001), energy (p = 0.021), entropy (p = 0.021), kurtosis (p < 0.001), and skewness (p < 0.001) were significantly higher in the positive PNI group than in the negative PNI group. Multivariable analysis showed that higher MRI T stage [β = 2.154, 95% confidence interval (CI) 0.932–3.688; p = 0.002] and skewness (β = 0.779, 95% CI 0.255–1.382; p = 0.006) were associated with positive PNI. The model combining skewness and MRI T stage had an area under the ROC curve of 0.811 (95% CI 0.724–0.899) for predicting PNI status.

Conclusion

Histogram parameters in zoomed EPI DWI can help predict the PNI status in RC.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AUC:

Area under the ROC curve

CI:

Confidence interval

DTA:

Distance from the inferior edge of the tumor to the anal verge

DWI:

Diffusion-weighted imaging

EMVI:

Extramural venous invasion

EPI:

Echo-planar imaging

ICC:

Intraclass correlation coefficient

MRF:

Mesorectal fascia

MRI:

Magnetic resonance imaging

MTL:

Maximum tumor length

MTT:

Maximum tumor thickness

PNI:

Perineural invasion

RC:

Rectal cancer

ROC:

Receiver operating characteristic

ROI:

Regions of interest

SD:

Short-axis diameter

ss-EPI:

Single-shot echo-planar imaging

T2WI:

T2-weighted image

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer Statistics, 2021. CA Cancer J Clin 71: 7–33. https://doi.org/https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  2. Siegel RL, Miller KD, Goding Sauer A, Fedewa SA, Butterly LF, Anderson JC, Cercek A, Smith RA, Jemal A (2020) Colorectal cancer statistics, 2020. CA Cancer J Clin 70: 145–164. https://doi.org/https://doi.org/10.3322/caac.21601

    Article  PubMed  Google Scholar 

  3. Benson AB, Venook AP, Al-Hawary MM, Cederquist L, Chen YJ, Ciombor KK, Cohen S, Cooper HS, Deming D, Engstrom PF, Grem JL, Grothey A, Hochster HS, Hoffe S, Hunt S, Kamel A, Kirilcuk N, Krishnamurthi S, Messersmith WA, Meyerhardt J, Mulcahy MF, Murphy JD, Nurkin S, Saltz L, Sharma S, Shibata D, Skibber JM, Sofocleous CT, Stoffel EM, Stotsky-Himelfarb E, Willett CG, Wuthrick E, Gregory KM, Gurski L, Freedman-Cass DA (2018) Rectal Cancer, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 16: 874–901. https://doi.org/https://doi.org/10.6004/jnccn.2018.0061

    Article  PubMed  Google Scholar 

  4. Glynne-Jones R, Wyrwicz L, Tiret E, Brown G, Rödel C, Cervantes A, Arnold D (2017) Rectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 28: iv22–iv40. https://doi.org/10.1093/annonc/mdx224

  5. Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, Lugli A, Zlobec I, Hartmann A, Bifulco C, Nagtegaal ID, Palmqvist R, Masucci GV, Botti G, Tatangelo F, Delrio P, Maio M, Laghi L, Grizzi F, Asslaber M, D'Arrigo C, Vidal-Vanaclocha F, Zavadova E, Chouchane L, Ohashi PS, Hafezi-Bakhtiari S, Wouters BG, Roehrl M, Nguyen L, Kawakami Y, Hazama S, Okuno K, Ogino S, Gibbs P, Waring P, Sato N, Torigoe T, Itoh K, Patel PS, Shukla SN, Wang Y, Kopetz S, Sinicrope FA, Scripcariu V, Ascierto PA, Marincola FM, Fox BA, Pagès F (2014) Towards the introduction of the ‘Immunoscore’ in the classification of malignant tumours. J Pathol 232: 199–209. https://doi.org/https://doi.org/10.1002/path.4287

    Article  CAS  PubMed  Google Scholar 

  6. Nagtegaal ID, Quirke P, Schmoll HJ (2011) Has the new TNM classification for colorectal cancer improved care? Nat Rev Clin Oncol 9: 119–123. https://doi.org/https://doi.org/10.1038/nrclinonc.2011.157

    Article  PubMed  Google Scholar 

  7. Amin MB, Edge S, Greene F, Byrd DR, Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR, Sullivan DC, Jessup JM, Brierley JD, Gaspar LE, Schilsky RL, Balch CM, Winchester DP, Asare EA, Madera M, Gress DM, Meyer LR (2017) AJCC Cancer Staging Manual. 8th edn. Springer, New York, pp 265.

    Book  Google Scholar 

  8. Liebig C, Ayala G, Wilks JA, Berger DH, Albo D (2009) Perineural invasion in cancer: a review of the literature. Cancer 115: 3379–3391. https://doi.org/https://doi.org/10.1002/cncr.24396

    Article  CAS  PubMed  Google Scholar 

  9. Betge J, Langner C (2011) Vascular invasion, perineural invasion, and tumour budding: predictors of outcome in colorectal cancer. Acta Gastroenterol Belg 74: 516–529

    PubMed  Google Scholar 

  10. Sun Q, Liu T, Liu P, Luo J, Zhang N, Lu K, Ju H, Zhu Y, Wu W, Zhang L, Fan Y, Liu Y, Li D, Zhu Y, Liu L (2019) Perineural and lymphovascular invasion predicts for poor prognosis in locally advanced rectal cancer after neoadjuvant chemoradiotherapy and surgery. J Cancer 10: 2243–2249. https://doi.org/https://doi.org/10.7150/jca.31473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stojkovic Lalosevic M, Milovanovic T, Micev M, Stojkovic M, Dragasevic S, Stulic M, Rankovic I, Dugalic V, Krivokapic Z, Pavlovic Markovic A (2020) Perineural invasion as a prognostic factor in patients with stage I–III rectal cancer - 5-year follow up. World J Gastrointest Oncol 12: 592–600. https://doi.org/https://doi.org/10.4251/wjgo.v12.i5.592

    Article  PubMed  PubMed Central  Google Scholar 

  12. Song JH, Yu M, Kang KM, Lee JH, Kim SH, Nam TK, Jeong JU, Jang HS, Lee JW, Jung JH (2019) Significance of perineural and lymphovascular invasion in locally advanced rectal cancer treated by preoperative chemoradiotherapy and radical surgery: Can perineural invasion be an indication of adjuvant chemotherapy? Radiother Oncol 133: 125–131. https://doi.org/https://doi.org/10.1016/j.radonc.2019.01.002

    Article  PubMed  Google Scholar 

  13. Kinugasa T, Mizobe T, Shiraiwa S, Akagi Y, Shirouzu K (2017) Perineural Invasion is a Prognostic Factor and Treatment Indicator in Patients with Rectal Cancer Undergoing Curative Surgery: 2000–2011 Data from a Single-center Study. Anticancer Res 37: 3961–3968. https://doi.org/10.21873/anticanres.11780

  14. Aktan M, Yavuz BB, Kanyilmaz G, Oltulu P (2020) Factors affecting pathological response and survival following neoadjuvant chemoradiotherapy in rectal cancer patients. Indian J Cancer 58: 53–560. https://doi.org/https://doi.org/10.4103/ijc.IJC_435_19

    Article  Google Scholar 

  15. Nikberg M, Chabok A, Letocha H, Kindler C, Glimelius B, Smedh K (2016) Lymphovascular and perineural invasion in stage II rectal cancer: a report from the Swedish colorectal cancer registry. Acta Oncol 55: 1418–1424. https://doi.org/https://doi.org/10.1080/0284186x.2016.1230274

    Article  PubMed  Google Scholar 

  16. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, Ganeshan B, Miles KA, Cook GJ, Goh V (2012) Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging 3: 573–589. https://doi.org/https://doi.org/10.1007/s13244-012-0196-6

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gatenby RA, Grove O, Gillies RJ (2013) Quantitative imaging in cancer evolution and ecology. Radiology 269: 8–15. https://doi.org/https://doi.org/10.1148/radiol.13122697

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gourtsoyianni S, Doumou G, Prezzi D, Taylor B, Stirling JJ, Taylor NJ, Siddique M, Cook GJR, Glynne-Jones R, Goh V (2017) Primary Rectal Cancer: Repeatability of Global and Local-Regional MR Imaging Texture Features. Radiology 284: 552–561. https://doi.org/https://doi.org/10.1148/radiol.2017161375

    Article  PubMed  Google Scholar 

  19. Cui Y, Yang X, Du X, Zhuo Z, Xin L, Cheng X (2018) Whole-tumour diffusion kurtosis MR imaging histogram analysis of rectal adenocarcinoma: Correlation with clinical pathologic prognostic factors. Eur Radiol 28: 1485–1494. https://doi.org/https://doi.org/10.1007/s00330-017-5094-3

    Article  PubMed  Google Scholar 

  20. Zhang K, Zheng Y, Huang H, Lei J (2021) Preliminary Study on Predicting Pathological Staging and Immunohistochemical Markers of Rectal Cancer Based on ADC Histogram Analysis. Acad Radiol 28: S184–S191. https://doi.org/https://doi.org/10.1016/j.acra.2021.02.004

    Article  PubMed  Google Scholar 

  21. Yang L, Liu D, Fang X, Wang Z, Xing Y, Ma L, Wu B (2019) Rectal cancer: can T2WI histogram of the primary tumor help predict the existence of lymph node metastasis? Eur Radiol 29: 6469–6476. https://doi.org/https://doi.org/10.1007/s00330-019-06328-z

    Article  PubMed  Google Scholar 

  22. Peng Y, Tang H, Meng X, Shen Y, Hu D, Kamel I, Li Z (2020) Histological grades of rectal cancer: whole-volume histogram analysis of apparent diffusion coefficient based on reduced field-of-view diffusion-weighted imaging. Quant Imaging Med Surg 10: 243–256. https://doi.org/10.21037/qims.2019.11.17

  23. Shi L, Zhang Y, Nie K, Sun X, Niu T, Yue N, Kwong T, Chang P, Chow D, Chen JH, Su MY (2019) Machine learning for prediction of chemoradiation therapy response in rectal cancer using pre-treatment and mid-radiation multi-parametric MRI. Magn Reson Imaging 61: 33–40. https://doi.org/https://doi.org/10.1016/j.mri.2019.05.003

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pham TT, Liney G, Wong K, Henderson C, Rai R, Graham PL, Borok N, Truong MX, Lee M, Shin JS, Hudson M, Barton MB (2021) Multi-parametric magnetic resonance imaging assessment of whole tumour heterogeneity for chemoradiotherapy response prediction in rectal cancer. Phys Imaging Radiat Oncol 18: 26–33. https://doi.org/https://doi.org/10.1016/j.phro.2021.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  25. He YL, Hausmann D, Morelli JN, Attenberger UI, Schoenberg SO, Riffel P (2016) Renal zoomed EPI-DWI with spatially-selective radiofrequency excitation pulses in two dimensions. Eur J Radiol 85: 1773–1777. https://doi.org/https://doi.org/10.1016/j.ejrad.2016.07.022

    Article  PubMed  Google Scholar 

  26. Rosenkrantz AB, Chandarana H, Pfeuffer J, Triolo MJ, Shaikh MB, Mossa DJ, Geppert C (2015) Zoomed echo-planar imaging using parallel transmission: impact on image quality of diffusion-weighted imaging of the prostate at 3 T. Abdom Imaging 40: 120–126. https://doi.org/https://doi.org/10.1007/s00261-014-0181-2

    Article  PubMed  Google Scholar 

  27. Riffel P, Michaely HJ, Morelli JN, Pfeuffer J, Attenberger UI, Schoenberg SO, Haneder S (2014) Zoomed EPI-DWI of the head and neck with two-dimensional, spatially-selective radiofrequency excitation pulses. Eur Radiol 24: 2507–2512. https://doi.org/https://doi.org/10.1007/s00330-014-3287-6

    Article  PubMed  Google Scholar 

  28. Riffel P, Michaely HJ, Morelli JN, Pfeuffer J, Attenberger UI, Schoenberg SO, Haneder S (2014) Zoomed EPI-DWI of the pancreas using two-dimensional spatially-selective radiofrequency excitation pulses. PLoS ONE 9: e89468. https://doi.org/https://doi.org/10.1371/journal.pone.0089468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Beets-Tan RGH, Lambregts DMJ, Maas M, Bipat S, Barbaro B, Curvo-Semedo L, Fenlon HM, Gollub MJ, Gourtsoyianni S, Halligan S, Hoeffel C, Kim SH, Laghi A, Maier A, Rafaelsen SR, Stoker J, Taylor SA, Torkzad MR, Blomqvist L (2018) Magnetic resonance imaging for clinical management of rectal cancer: Updated recommendations from the 2016 European Society of Gastrointestinal and Abdominal Radiology (ESGAR) consensus meeting. Eur Radiol 28: 1465–1475. https://doi.org/https://doi.org/10.1007/s00330-017-5026-2

    Article  PubMed  Google Scholar 

  30. Smith NJ, Barbachano Y, Norman AR, Swift RI, Abulafi AM, Brown G (2008) Prognostic significance of magnetic resonance imaging-detected extramural vascular invasion in rectal cancer. Br J Surg 95: 229–236. https://doi.org/https://doi.org/10.1002/bjs.5917

    Article  CAS  PubMed  Google Scholar 

  31. Nagtegaal ID, Odze RD, Klimstra D, Paradis V, Rugge M, Schirmacher P, Washington KM, Carneiro F, Cree IA (2020) The 2019 WHO classification of tumours of the digestive system. Histopathology 76: 182–188. https://doi.org/https://doi.org/10.1111/his.13975

    Article  PubMed  Google Scholar 

  32. Knijn N, Mogk SC, Teerenstra S, Simmer F, Nagtegaal ID (2016) Perineural Invasion is a Strong Prognostic Factor in Colorectal Cancer: A Systematic Review. Am J Surg Pathol 40: 103–112. https://doi.org/https://doi.org/10.1097/pas.0000000000000518

    Article  PubMed  Google Scholar 

  33. Yeo DM, Oh SN, Choi MH, Lee SH, Lee MA, Jung SE (2018) Histogram Analysis of Perfusion Parameters from Dynamic Contrast-Enhanced MR Imaging with Tumor Characteristics and Therapeutic Response in Locally Advanced Rectal Cancer. Biomed Res Int 2018: 3724393. https://doi.org/https://doi.org/10.1155/2018/3724393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li Y, Liu W, Pei Q, Zhao L, Güngör C, Zhu H, Song X, Li C, Zhou Z, Xu Y, Wang D, Tan F, Yang P, Pei H (2019) Predicting pathological complete response by comparing MRI-based radiomics pre- and postneoadjuvant radiotherapy for locally advanced rectal cancer. Cancer Med 8: 7244–7252. https://doi.org/https://doi.org/10.1002/cam4.2636

    Article  PubMed  PubMed Central  Google Scholar 

  35. Seeger A, Klose U, Bischof F, Strobel J, Ernemann U, Hauser TK (2016) Zoomed EPI DWI of Acute Spinal Ischemia Using a Parallel Transmission System. Clin Neuroradiol 26: 177–182. https://doi.org/https://doi.org/10.1007/s00062-014-0342-2

    Article  CAS  PubMed  Google Scholar 

  36. Liu L, Liu Y, Xu L, Li Z, Lv H, Dong N, Li W, Yang Z, Wang Z, Jin E (2017) Application of texture analysis based on apparent diffusion coefficient maps in discriminating different stages of rectal cancer. J Magn Reson Imaging 45: 1798–1808. https://doi.org/https://doi.org/10.1002/jmri.25460

    Article  PubMed  Google Scholar 

  37. Peng Y, Tang H, Hu X, Shen Y, Kamel I, Li Z, Hu D (2019) Rectal Cancer Invasiveness: Whole-Lesion Diffusion-Weighted Imaging (DWI) Histogram Analysis by Comparison of Reduced Field-of-View and Conventional DWI Techniques. Sci Rep 9: 18760. https://doi.org/https://doi.org/10.1038/s41598-019-55059-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang YS, Qiu YJ, Zheng GH, Gong HP, Ge YQ, Zhang YF, Feng F, Wang YT (2021) High resolution MRI-based radiomic nomogram in predicting perineural invasion in rectal cancer. Cancer Imaging 21: 40. https://doi.org/https://doi.org/10.1186/s40644-021-00408-4

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhang K, Ren Y, Xu S, Lu W, Xie S, Qu J, Wang X, Shen B, Pang P, Cai X, Sun J (2021) A clinical-radiomics model incorporating T2-weighted and diffusion-weighted magnetic resonance images predicts the existence of lymphovascular invasion/perineural invasion in patients with colorectal cancer. Med Phys 48: 4872–4882. https://doi.org/https://doi.org/10.1002/mp.15001

    Article  PubMed  Google Scholar 

Download references

Funding

This research is supported by the National Natural Science Foundation of China (Grant Number 81971589); CAMS Innovation Fund for Medical Sciences (CIFMS, Grant Number 2021-I2M-C&T-A-017); 2020 SKY Imaging Research Fund (Grant Number Z-2014-07-2003-01); and Youth Research Fund of Peking Union Medical College, the Fundamental Research Funds for the Central Universities (Grant Number 3332021098).

Author information

Authors and Affiliations

Authors

Contributions

Study concepts/study design, data acquisition, or data analysis/interpretation, all authors; quality control of date and algorithms, FY, XMZ, and HMZ; statistical analysis, LJW and HMZ; drafting the article or revising it critically for important intellectual content, all authors; final approval of the version to be submitted, all authors.

Corresponding author

Correspondence to Hongmei Zhang.

Ethics declarations

Conflict of interest

All authors (Lijuan Wan, Wenjing Peng, Shuangmei Zou, Qinglei Shi, Peihua Wu, Qing Zhao, Feng Ye, Xinming Zhao, Hongmei Zhang) have no conflicts of interest to be disclosed related to this article.

Ethical approval

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 63 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, L., Peng, W., Zou, S. et al. Predicting perineural invasion using histogram analysis of zoomed EPI diffusion-weighted imaging in rectal cancer. Abdom Radiol 47, 3353–3363 (2022). https://doi.org/10.1007/s00261-022-03579-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-022-03579-1

Keywords

Navigation