Skip to main content

Advertisement

Log in

Impact of 18F-FDG PET/MR based tumor delineation in radiotherapy planning for cholangiocarcinoma

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Radiation therapy (RT) is an effective treatment for unresectable cholangiocarcinoma (CC). Accurate tumor volume delineation is critical in achieving high rates of local control while minimizing treatment-related toxicity. This study compares 18F-FDG PET/MR to MR and CT for target volume delineation for RT planning.

Methods

We retrospectively included 22 patients with newly diagnosed unresectable primary CC who underwent 18F-FDG PET/MR for initial staging. Gross tumor volume (GTV) of the primary mass (GTVM) and lymph nodes (GTVLN) were contoured on CT images, MR images, and PET/MR fused images and compared among modalities. The dice similarity coefficient (DSC) was calculated to assess spatial coverage between different modalities.

Results

GTV PET/MRM (median: 94 ml, range 16–655 ml) was significantly greater than GTV MRM (69 ml, 11–635 ml) (p = 0.0001) and GTV CTM (96 ml, 4–564 ml) (p = 0.035). There was no significant difference between GTV CTM and GTV MRM (p = 0.078). Subgroup analysis of intrahepatic and extrahepatic tumors showed that the median GTV PET/MRM was significantly greater than GTV MRM in both groups (117.5 ml, 22–655 ml vs. 102.5 ml, 22–635 ml, p = 0.004 and 37 ml, 16–303 ml vs. 34 ml, 11–207 ml, p = 0.042, respectively). The GTV PET/MRLN (8.5 ml, 1–27 ml) was significantly higher than GTV CTLN (5 ml, 4–16 ml) (p = 0.026). GTVPET/MR had the highest similarity to the GTVMR, i.e., DSCPET/MR-MR (0.82, 0.25–1.00), compared to DSC PET/MR-CT of 0.58 (0.22–0.87) and DSCMR-CT of 0.58 (0.03–0.83).

Conclusion

18F-FDG PET/MR-based CC delineation yields greater GTVs and detected a higher number of positive lymph nodes compared to CT or MR, potentially improving RT planning by reducing the risk of geographic misses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data of the study is available on demand.

References

  1. GBD Compare. (2015) Institute for Health Metrics and Evaluation (IHME). http://vizhub.healthdata.org/gbd-compare. Accessed March 26 2020

  2. Oliveira IS, Kilcoyne A, Everett JM, Mino-Kenudson M, Harisinghani MG, Ganesan K (2017) Cholangiocarcinoma: classification, diagnosis, staging, imaging features, and management. Abdominal Radiology 42 (6):1637-1649. https://doi.org/10.1007/s00261-017-1094-7

    Article  PubMed  Google Scholar 

  3. Zhang H, Yang T, Wu M, Shen F (2016) Intrahepatic cholangiocarcinoma: Epidemiology, risk factors, diagnosis and surgical management. Cancer letters 379 (2):198-205. https://doi.org/10.1016/j.canlet.2015.09.008

    Article  CAS  PubMed  Google Scholar 

  4. Choi S-B, Kim K-S, Choi J-Y, Park S-W, Choi J-S, Lee W-J, Chung J-B (2009) The prognosis and survival outcome of intrahepatic cholangiocarcinoma following surgical resection: association of lymph node metastasis and lymph node dissection with survival. Annals of Surgical Oncology 16 (11):3048-3056. https://doi.org/10.1245/s10434-009-0631-1

    Article  PubMed  Google Scholar 

  5. Weber SM, Ribero D, O = Reilly EM, Kokudo N, Miyazaki M, Pawlik TM (2015) Intrahepatic Cholangiocarcinoma: expert consensus statement. HPB : The Official Journal of the International Hepato Pancreato Biliary Association 17 (8):669-680. https://doi.org/10.1111/hpb.12441

  6. Hong K, Geschwind JF (2010) Locoregional intra-arterial therapies for unresectable intrahepatic cholangiocarcinoma. Seminars in oncology 37 (2):110-117. https://doi.org/10.1053/j.seminoncol.2010.03.002

    Article  PubMed  Google Scholar 

  7. Guro H, Kim JW, Choi Y, Cho JY, Yoon YS, Han HS (2017) Multidisciplinary management of intrahepatic cholangiocarcinoma: Current approaches. Surgical oncology 26 (2):146-152. https://doi.org/10.1016/j.suronc.2017.03.001

    Article  PubMed  Google Scholar 

  8. Sahai P, Kumar S External radiotherapy and brachytherapy in the management of extrahepatic and intrahepatic cholangiocarcinoma: available evidence. The British Journal of Radiology 90 (1076). https://doi.org/10.1259/bjr.20170061

  9. Shinohara ET, Mitra N, Guo M, Metz JM (2008) Radiation therapy is associated with improved survival in the adjuvant and definitive treatment of intrahepatic cholangiocarcinoma. International Journal of Radiation Oncology, Biology, Physics 72 (5):1495-1501. https://doi.org/10.1016/j.ijrobp.2008.03.018

    Article  PubMed  Google Scholar 

  10. Habermehl D, Lindel K, Rieken S, Haase K, Goeppert B, Büchler MW, Schirmacher P, Welzel T, Debus J, Combs SE (2012) Chemoradiation in patients with unresectable extrahepatic and hilar cholangiocarcinoma or at high risk for disease recurrence after resection. Strahlentherapie und Onkologie 188 (9):795-801. https://doi.org/10.1007/s00066-012-0099-y

    Article  CAS  PubMed  Google Scholar 

  11. Tao R, Krishnan S, Bhosale PR, Javle MM, Aloia TA, Shroff RT, Kaseb AO, Bishop AJ, Swanick CW, Koay EJ, Thames HD, Hong TS, Das P, Crane CH (2016) Ablative Radiotherapy Doses Lead to a Substantial Prolongation of Survival in Patients With Inoperable Intrahepatic Cholangiocarcinoma: A Retrospective Dose Response Analysis. Journal of Clinical Oncology 34 (3):219-226. https://doi.org/10.1200/jco.2015.61.3778

    Article  CAS  PubMed  Google Scholar 

  12. Sahai P, Kumar S (2017) External radiotherapy and brachytherapy in the management of extrahepatic and intrahepatic cholangiocarcinoma: available evidence. Br J Radiol 90 (1076):20170061. https://doi.org/10.1259/bjr.20170061

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hong TS, Wo JY, Yeap BY, Ben-Josef E, McDonnell EI, Blaszkowsky LS, Kwak EL, Allen JN, Clark JW, Goyal L, Murphy JE, Javle MM, Wolfgang JA, Drapek LC, Arellano RS, Mamon HJ, Mullen JT, Yoon SS, Tanabe KK, Ferrone CR, Ryan DP, DeLaney TF, Crane CH, Zhu AX (2016) Multi-Institutional Phase II Study of High-Dose Hypofractionated Proton Beam Therapy in Patients With Localized, Unresectable Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Journal of Clinical Oncology 34 (5):460-468. https://doi.org/10.1200/jco.2015.64.2710

    Article  CAS  PubMed  Google Scholar 

  14. Cho Y, Kim TH, Seong J (2017) Improved oncologic outcome with chemoradiotherapy followed by surgery in unresectable intrahepatic cholangiocarcinoma. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft [et al] 193 (8):620-629. https://doi.org/10.1007/s00066-017-1128-7

    Article  Google Scholar 

  15. Garibaldi C, Jereczek-Fossa BA, Marvaso G, Dicuonzo S, Rojas DP, Cattani F, Starzyńska A, Ciardo D, Surgo A, Leonardi MC, Ricotti R (2017) Recent advances in radiation oncology. Ecancermedicalscience 11:785. https://doi.org/10.3332/ecancer.2017.785

    Article  Google Scholar 

  16. Luterstein E, Cao M, Lamb JM, Raldow A, Low D, Steinberg ML, Lee P (2020) Clinical Outcomes Using Magnetic Resonance-Guided Stereotactic Body Radiation Therapy in Patients With Locally Advanced Cholangiocarcinoma. Advances in radiation oncology 5 (2):189-195. https://doi.org/10.1016/j.adro.2019.09.008

    Article  PubMed  Google Scholar 

  17. De Gaetano AM, Rufini V, Castaldi P, Gatto AM, Filograna L, Giordano A, Bonomo L (2012) Clinical applications of 18F-FDG PET in the management of hepatobiliary and pancreatic tumors. Abdominal Imaging 37 (6):983-1003. https://doi.org/10.1007/s00261-012-9845-y

    Article  PubMed  Google Scholar 

  18. Hu J-H, Tang J-h, Lin C-H, Chu Y-Y, Liu N-J (2018) Preoperative staging of cholangiocarcinoma and biliary carcinoma using 18F-fluorodeoxyglucose positron emission tomography: a meta-analysis. Journal of Investigative Medicine 66 (1):52-61. https://doi.org/10.1136/jim-2017-000472

    Article  PubMed  Google Scholar 

  19. Lamarca A, Barriuso J, Chander A, McNamara MG, Hubner RA, ÓReilly D, Manoharan P, Valle JW (2019) 18F-fluorodeoxyglucose positron emission tomography (18FDG-PET) for patients with biliary tract cancer: Systematic review and meta-analysis. Journal of Hepatology 71 (1):115-129. https://doi.org/10.1016/j.jhep.2019.01.038

  20. Lee Y, Yoo IR, Boo SH, Kim H, Park HL, Hyun O J (2017) The Role of F-18 FDG PET/CT in Intrahepatic Cholangiocarcinoma. Nuclear Medicine and Molecular Imaging 51 (1):69-78. https://doi.org/10.1007/s13139-016-0440-y

    Article  CAS  PubMed  Google Scholar 

  21. Parlak C, Topkan E, Sonmez S, Onal C, Reyhan M (2012) CT- versus coregistered FDG-PET/CT-based radiation therapy plans for conformal radiotherapy in colorectal liver metastases: a dosimetric comparison. Japanese Journal of Radiology 30 (8):628-634. https://doi.org/10.1007/s11604-012-0101-8

    Article  PubMed  Google Scholar 

  22. Prathipati A, Manthri RG, Subramanian BV, Das P, Jilla S, Mani S, J. AK, Sarala S, Kottu R, Kalawat TC, Naidu KVJR (2017) A Prospective Study Comparing Functional Imaging (18F-FDG PET) Versus Anatomical Imaging (Contrast Enhanced CT) in Dosimetric Planning for Non-small Cell Lung Cancer. Asia Oceania Journal of Nuclear Medicine and Biology 5 (2):75-84. https://doi.org/10.22038/aojnmb.2017.8706

  23. Topkan E, Yavuz AA, Aydin M, Onal C, Yapar F, Yavuz MN (2008) Comparison of CT and PET-CT based planning of radiation therapy in locally advanced pancreatic carcinoma. Journal of Experimental & Clinical Cancer Research : CR 27 (1):41. https://doi.org/10.1186/1756-9966-27-41

    Article  PubMed Central  Google Scholar 

  24. Onal C, Topuk S, Yapar AF, Yavuz M, Topkan E, Yavuz A (2013) Comparison of Computed Tomography- and Positron Emission Tomography-Based Radiotherapy Planning in Cholangiocarcinoma. Oncology Research and Treatment 36 (9):484-490. https://doi.org/10.1159/000354630

    Article  CAS  Google Scholar 

  25. Catalano OA, Rosen BR, Sahani DV, Hahn PF, Guimaraes AR, Vangel MG, Nicolai E, Soricelli A, Salvatore M (2013) Clinical Impact of PET/MR Imaging in Patients with Cancer Undergoing Same-Day PET/CT: Initial Experience in 134 Patients—A Hypothesis-generating Exploratory Study. Radiology 269 (3):857-869. https://doi.org/10.1148/radiol.13131306

    Article  PubMed  Google Scholar 

  26. Chan S-C, Yeh C-H, Yen T-C, Ng S-H, Chang JT-C, Lin C-Y, Yen-Ming T, Fan K-H, Huang B-S, Hsu C-L, Chang K-P, Wang H-M, Liao C-T (2018) Clinical utility of simultaneous whole-body 18F-FDG PET/MRI as a single-step imaging modality in the staging of primary nasopharyngeal carcinoma. European Journal of Nuclear Medicine and Molecular Imaging 45 (8):1297-1308. https://doi.org/10.1007/s00259-018-3986-3

    Article  PubMed  Google Scholar 

  27. Melsaether AN, Raad RA, Pujara AC, Ponzo FD, Pysarenko KM, Jhaveri K, Babb JS, Sigmund EE, Kim SG, Moy LA (2016) Comparison of Whole-Body 18F FDG PET/MR Imaging and Whole-Body 18F FDG PET/CT in Terms of Lesion Detection and Radiation Dose in Patients with Breast Cancer. Radiology 281 (1):193-202. https://doi.org/10.1148/radiol.2016151155

    Article  PubMed  Google Scholar 

  28. Zou KH, Warfield SK, Bharatha A, Tempany CMC, Kaus MR, Haker SJ, Wells WM, Jolesz FA, Kikinis R (2004) Statistical Validation of Image Segmentation Quality Based on a Spatial Overlap Index. Academic radiology 11 (2):178-189. https://doi.org/10.1016/s1076-6332(03)00671-8

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rosenkrantz AB, Friedman K, Chandarana H, Melsaether A, Moy L, Ding Y-S, Jhaveri K, Beltran L, Jain R (2015) Current Status of Hybrid PET/MRI in Oncologic Imaging. American Journal of Roentgenology 206 (1):162-172. https://doi.org/10.2214/ajr.15.14968

    Article  PubMed  Google Scholar 

  30. Ehman EC, Johnson GB, Villanueva-Meyer JE, Cha S, Leynes AP, Larson PEZ, Hope TA (2017) PET/MRI: Where might it replace PET/CT? Journal of magnetic resonance imaging : JMRI 46 (5):1247-1262. https://doi.org/10.1002/jmri.25711

    Article  PubMed  Google Scholar 

  31. Guniganti P, Kierans AS (2021) PET/MRI of the hepatobiliary system: Review of techniques and applications. Clinical imaging 71:160-169. https://doi.org/10.1016/j.clinimag.2020.10.056

    Article  PubMed  Google Scholar 

  32. Jiang L, Tan H, Panje CM, Yu H, Xiu Y, Shi H (2016) Role of 18F-FDG PET/CT imaging in intrahepatic cholangiocarcinoma. Clinical nuclear medicine 41 (1):1-7

    Article  Google Scholar 

  33. Anderson MA, Appalaneni V, Ben-Menachem T, Decker GA, Early DS, Evans JA, Fanelli RD, Fisher DA, Fisher LR, Fukami N (2013) The role of endoscopy in the evaluation and treatment of patients with biliary neoplasia. Gastrointestinal endoscopy 77 (2):167-174

    Article  Google Scholar 

  34. Mayerhoefer ME, Prosch H, Beer L, Tamandl D, Beyer T, Hoeller C, Berzaczy D, Raderer M, Preusser M, Hochmair M, Kiesewetter B, Scheuba C, Ba-Ssalamah A, Karanikas G, Kesselbacher J, Prager G, Dieckmann K, Polterauer S, Weber M, Rausch I, Brauner B, Eidherr H, Wadsak W, Haug AR (2020) PET/MRI versus PET/CT in oncology: a prospective single-center study of 330 examinations focusing on implications for patient management and cost considerations. European Journal of Nuclear Medicine and Molecular Imaging 47 (1):51-60. https://doi.org/10.1007/s00259-019-04452-y

    Article  CAS  PubMed  Google Scholar 

  35. Ferrone C, Goyal L, Qadan M, Gervais D, Sahani DV, Zhu AX, Hong TS, Blaszkowsky LS, Tanabe KK, Vangel M, Amorim BJ, Wo JY, Mahmood U, Pandharipande PV, Catana C, Duenas VP, Collazo YQ, Canamaque LG, Domachevsky L, Bernstine HH, Groshar D, Shih TT-F, Li Y, Herrmann K, Umutlu L, Rosen BR, Catalano OA (2020) Management implications of fluorodeoxyglucose positron emission tomography/magnetic resonance in untreated intrahepatic cholangiocarcinoma. European Journal of Nuclear Medicine and Molecular Imaging 47 (8):1871-1884. https://doi.org/10.1007/s00259-019-04558-3

    Article  CAS  PubMed  Google Scholar 

  36. Zhang S, Xin J, Guo Q, Ma J, Ma Q, Sun H, Zhao X (2014) Defining PET tumor volume in cervical cancer with hybrid PET/MRI: a comparative study. Nuclear medicine communications 35 (7):712-719. https://doi.org/10.1097/mnm.0000000000000113

    Article  PubMed  Google Scholar 

  37. Samolyk-Kogaczewska N, Sierko E, Zuzda K, Gugnacki P, Szumowski P, Mojsak M, Burzynska-Sliwowska J, Wojtukiewicz MZ, Szczecina K, Jurgilewicz DH (2019) PET/MRI-guided GTV delineation during radiotherapy planning in patients with squamous cell carcinoma of the tongue. Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft [et al] 195 (9):780-791. https://doi.org/10.1007/s00066-019-01480-3

    Article  Google Scholar 

  38. Ma JT, Han CB, Zheng JH, Sun HZ, Zhang SM, Xin J, Guo QY (2017) Hybrid PET/MRI-based delineation of gross tumor volume in head and neck cancer and tumor parameter analysis. Nuclear medicine communications 38 (7):642-649. https://doi.org/10.1097/mnm.0000000000000687

    Article  PubMed  Google Scholar 

  39. Tanenbaum DG, Hall WA, Mittal P, Nickleach DC, Mikell JL, Colbert LE, Moreno CC, Squires MH, Fisher SB, Yu DS, Kooby DA, Maithel SK, Landry JC (2016) Cholangiocarcinoma size on magnetic resonance imaging versus pathologic specimen: Implications for radiation treatment planning. Practical Radiation Oncology 6 (3):201-206. https://doi.org/10.1016/j.prro.2015.10.005

    Article  PubMed  Google Scholar 

  40. Seo S, Hatano E, Higashi T, Nakajima A, Nakamoto Y, Tada M, Tamaki N, Iwaisako K, Mori A, Doi R, Ikai I, Uemoto S (2008) Fluorine-18 fluorodeoxyglucose positron emission tomography predicts lymph node metastasis, P-glycoprotein expression, and recurrence after resection in mass-forming intrahepatic cholangiocarcinoma. Surgery 143 (6):769-777. https://doi.org/10.1016/j.surg.2008.01.010

  41. Jiang L, Tan H, Panje C, Yu H, Xiu Y, Shi H (2016) Role of 18F-FDG PET/CT Imaging in Intrahepatic Cholangiocarcinoma. Clinical Nuclear Medicine 41 (1):1-7. https://doi.org/10.1097/rlu.0000000000000998

    Article  PubMed  Google Scholar 

  42. Rakheja R, DeMello L, Chandarana H, Glielmi C, Geppert C, Faul D, Friedman KP (2013) Comparison of the accuracy of PET/CT and PET/MRI spatial registration of multiple metastatic lesions. AJR American journal of roentgenology 201 (5):1120-1123. https://doi.org/10.2214/ajr.13.11305

    Article  PubMed  Google Scholar 

  43. Sabate-Llobera A, Gracia-Sanchez L, Reynes-Llompart G, Ramos E, Llado L, Robles J, Serrano T, Mestres-Marti J, Gamez-Cenzano C (2019) Differences on metabolic behavior between intra and extrahepatic cholangiocarcinomas at (18)F-FDG-PET/CT: prognostic implication of metabolic parameters and tumor markers. Clin Transl Oncol 21 (3):324-333. https://doi.org/10.1007/s12094-018-1926-0

    Article  CAS  PubMed  Google Scholar 

  44. Annunziata S, Caldarella C, Pizzuto DA, Galiandro F, Sadeghi R, Giovanella L, Treglia G (2014) Diagnostic accuracy of fluorine-18-fluorodeoxyglucose positron emission tomography in the evaluation of the primary tumor in patients with cholangiocarcinoma: a meta-analysis. BioMed research international 2014:247693. https://doi.org/10.1155/2014/247693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onofrio Antonio Catalano.

Ethics declarations

Conflicts of interest

The authors have no disclosures.

Ethics approval

The study protocol was approved by institutional review board and a waiver of informed consent requirement was obtained given the retrospective nature of the study (Protocol Number: 2018P001334).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delaby, G., Ataeinia, B., Wo, J. et al. Impact of 18F-FDG PET/MR based tumor delineation in radiotherapy planning for cholangiocarcinoma. Abdom Radiol 46, 3908–3916 (2021). https://doi.org/10.1007/s00261-021-03053-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03053-4

Keywords

Navigation