Skip to main content
Log in

Low-dose dual-energy CT for stone characterization: a systematic comparison of two generations of split-filter single-source and dual-source dual-energy CT

  • Technical
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare noise texture and accuracy to differentiate uric acid from non-uric acid urinary stones among four different single-source and dual-source DECT approaches in an ex vivo phantom study.

Methods

Thirty-two urinary stones embedded in gelatin were mounted on a Styrofoam disk and placed into a water-filled phantom. The phantom was imaged using four different DECT approaches: (A) dual-source DECT (DS-DE); (B) 1st generation split-filter single-source DECT (SF1-TB); (C) 2nd generation split-filter single-source DECT (SF2-TB) and (D) 2nd generation split-filter single-source DECT using serial acquisitions (SF2-TS). Two different radiation doses (3 mGy and 6 mGy) were used. Noise texture was compared by assessing the average spatial frequency (fav) of the normalized noise power spectrum (nNPS). ROC curves for stone classification were computed and the accuracy for different dual-energy ratio cutoffs was derived.

Results

NNPS demonstrated comparable noise texture among A, C, and D (fav-range 0.18–0.19) but finer noise texture for B (fav = 0.27). Stone classification showed an accuracy of 96.9%, 96.9%, 93.8%, 93.8% for A, B, C, D for low-dose, respectively, and 100%, 96.9%, 96.9%, 100% for routine dose. The vendor-specified cutoff for the dual-energy ratio was optimal except for the low-dose scan in D for which the accuracy was improved from 93.8 to 100% using an optimized cutoff.

Conclusion

Accuracy to differentiate uric acid from non-uric acid stones was high among four single-source and dual-source DECT approaches for low- and routine dose DECT scans. Noise texture differed only slightly for the first-generation split-filter approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

All data and material is freely available.

Abbreviations

SECT:

Single-energy computed tomography

DECT:

Dual-energy computed tomography

SF-DE:

Split-filter dual-energy

DS-DE:

Dual source dual-energy

SF1-TB:

1st generation split filter twin beam

SF2-TB:

2nd generation split filter twin beam

SF2-TS:

2nd generation split-filter twin spiral

ROI:

Region of interest

nNPS:

Normalized noise power spectrum

f av :

Average spatial frequency

f peak :

Peak spatial frequency

ROC:

Receiver operating characteristic

AUC:

Area under the curve

CI:

Confidence interval

References

  1. C.D. Scales, A.C. Smith, J.M. Hanley, C.S. Saigal, Prevalence of Kidney Stones in the United States, Eur. Urol. 62 (2012) 160–165. https://doi.org/10.1016/j.eururo.2012.03.052.

    Article  PubMed  PubMed Central  Google Scholar 

  2. V.O. Edvardsson, O.S. Indridason, G. Haraldsson, O. Kjartansson, R. Palsson, Temporal trends in the incidence of kidney stone disease, Kidney Int. 83 (2013) 146–152. https://doi.org/10.1038/ki.2012.320.

    Article  PubMed  Google Scholar 

  3. P. Balthazar, G. Sadigh, D. Hughes, A.B. Rosenkrantz, T. Hanna, R. Duszak, Increasing Use, Geographic Variation, and Disparities in Emergency Department CT for Suspected Urolithiasis, J. Am. Coll. Radiol. JACR. 16 (2019) 1547–1553. https://doi.org/10.1016/j.jacr.2019.05.033.

    Article  PubMed  Google Scholar 

  4. A.C. Westphalen, R.Y. Hsia, J.H. Maselli, R. Wang, R. Gonzales, Radiological Imaging of Patients With Suspected Urinary Tract Stones: National Trends, Diagnoses, and Predictors, Acad. Emerg. Med. 18 (2011) 699–707. https://doi.org/10.1111/j.1553-2712.2011.01103.x.

    Article  PubMed  PubMed Central  Google Scholar 

  5. C.-W. Fwu, P.W. Eggers, P.L. Kimmel, J.W. Kusek, Z. Kirkali, Emergency department visits, use of imaging, and drugs for urolithiasis have increased in the United States, Kidney Int. 83 (2013) 479–486. https://doi.org/10.1038/ki.2012.419.

    Article  PubMed  PubMed Central  Google Scholar 

  6. A. Lukasiewicz, M. Bhargavan-Chatfield, L. Coombs, M. Ghita, J. Weinreb, G. Gunabushanam, C.L. Moore, Radiation dose index of renal colic protocol CT studies in the United States: a report from the American College of Radiology National Radiology Data Registry, Radiology. 271 (2014) 445–451. https://doi.org/10.1148/radiol.14131601.

    Article  PubMed  PubMed Central  Google Scholar 

  7. K. Weisenthal, P. Karthik, M. Shaw, D. Sengupta, M. Bhargavan-Chatfield, J. Burleson, A. Mustafa, M. Kalra, C. Moore, Evaluation of Kidney Stones with Reduced-Radiation Dose CT: Progress from 2011-2012 to 2015-2016-Not There Yet, Radiology. 286 (2018) 581–589. https://doi.org/10.1148/radiol.2017170285.

    Article  PubMed  Google Scholar 

  8. M. Diamond, D. Shin, J. Wang, B. Samuelsen, C. LeBedis, Imaging of Nontraumatic Upper Urinary Tract Emergencies, Semin. Roentgenol. 55 (2020) 180–196. https://doi.org/10.1053/j.ro.2019.10.009.

    Article  PubMed  Google Scholar 

  9. E. Bres–Niewada, B. Dybowski, P. Radziszewski, Predicting stone composition before treatment – can it really drive clinical decisions?, Cent. Eur. J. Urol. 67 (2014) 392–396. https://doi.org/10.5173/ceju.2014.04.art15.

    Article  Google Scholar 

  10. A. Euler, A. Parakh, A.L. Falkowski, S. Manneck, D. Dashti, B. Krauss, Z. Szucs-Farkas, S.T. Schindera, Initial Results of a Single-Source Dual-Energy Computed Tomography Technique Using a Split-Filter: Assessment of Image Quality, Radiation Dose, and Accuracy of Dual-Energy Applications in an In Vitro and In Vivo Study, Invest. Radiol. 51 (2016) 491–498. https://doi.org/10.1097/RLI.0000000000000257.

    Article  CAS  PubMed  Google Scholar 

  11. A. Euler, M.M. Obmann, Z. Szucs-Farkas, A. Mileto, C. Zaehringer, A.L. Falkowski, D.J. Winkel, D. Marin, B. Stieltjes, B. Krauss, S.T. Schindera, Comparison of image quality and radiation dose between split-filter dual-energy images and single-energy images in single-source abdominal CT, Eur. Radiol. 28 (2018) 3405–3412. https://doi.org/10.1007/s00330-018-5338-x.

    Article  PubMed  Google Scholar 

  12. M. Eichler, M. May, M. Wiesmueller, M. Saake, R. Heiss, M. Uder, W. Wuest, Single source split filter dual energy: Image quality and liver lesion detection in abdominal CT, Eur. J. Radiol. 126 (2020) 108913. https://doi.org/10.1016/j.ejrad.2020.108913.

    Article  PubMed  Google Scholar 

  13. O. Mm, C. A, C. J, H. V, S. B, B. Dt, Y. Bm, B. Mr, Quantitative enhancement thresholds and machine learning algorithms for the evaluation of renal lesions using single-phase split-filter dual-energy CT., Abdom. Radiol. N. Y. 45 (2020) 1922–1928. https://doi.org/10.1007/s00261-019-02195-w.

  14. X. Zheng, Y. Liu, M. Li, Q. Wang, B. Song, Dual-energy computed tomography for characterizing urinary calcified calculi and uric acid calculi: A meta-analysis, Eur. J. Radiol. 85 (2016) 1843–1848. https://doi.org/10.1016/j.ejrad.2016.08.013.

    Article  PubMed  Google Scholar 

  15. T.A. McGrath, R.A. Frank, N. Schieda, B. Blew, J.-P. Salameh, P.M.M. Bossuyt, M.D.F. McInnes, Diagnostic accuracy of dual-energy computed tomography (DECT) to differentiate uric acid from non-uric acid calculi: systematic review and meta-analysis, Eur. Radiol. 30 (2020) 2791–2801. https://doi.org/10.1007/s00330-019-06559-0.

    Article  PubMed  Google Scholar 

  16. E. Samei, D. Bakalyar, K.L. Boedeker, S. Brady, J. Fan, S. Leng, K.J. Myers, L.M. Popescu, J.C.R. Giraldo, F. Ranallo, J. Solomon, J. Vaishnav, J. Wang, Performance evaluation of computed tomography systems: Summary of AAPM Task Group 233, Med. Phys. 46 (2019) e735–e756. https://doi.org/10.1002/mp.13763.

    Article  PubMed  Google Scholar 

  17. F. Morsbach, M.C. Wurnig, D. Müller, B. Krauss, J.G. Korporaal, H. Alkadhi, Feasibility of Single-Source Dual-Energy Computed Tomography for Urinary Stone Characterization and Value of Iterative Reconstructions, Invest. Radiol. 49 (2014) 125–130. https://doi.org/10.1097/RLI.0000000000000002.

    Article  PubMed  Google Scholar 

  18. J. Menke, Comparison of Different Body Size Parameters for Individual Dose Adaptation in Body CT of Adults, Radiology. 236 (2005) 565–571. https://doi.org/10.1148/radiol.2362041327.

    Article  PubMed  Google Scholar 

  19. J.B. Solomon, O. Christianson, E. Samei, Quantitative comparison of noise texture across CT scanners from different manufacturers, Med. Phys. 39 (2012) 6048–6055. https://doi.org/10.1118/1.4752209.

    Article  PubMed  Google Scholar 

  20. J. Solomon, J. Wilson, E. Samei, Characteristic image quality of a third generation dual-source MDCT scanner: Noise, resolution, and detectability, Med. Phys. 42 (2015) 4941–4953. https://doi.org/10.1118/1.4923172.

    Article  PubMed  Google Scholar 

  21. A. Euler, J. Solomon, D. Marin, R.C. Nelson, E. Samei, A Third-Generation Adaptive Statistical Iterative Reconstruction Technique: Phantom Study of Image Noise, Spatial Resolution, Lesion Detectability, and Dose Reduction Potential, Am. J. Roentgenol. 210 (2018) 1301–1308. https://doi.org/10.2214/AJR.17.19102.

    Article  Google Scholar 

  22. RStudio Team (2020), RStudio: Integrated Development for R., Boston, MA, n.d. http://www.rstudio.com/.

  23. X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C. Sanchez, M. Müller, pROC: an open-source package for R and S + to analyze and compare ROC curves, BMC Bioinformatics. 12 (2011) 77. https://doi.org/10.1186/1471-2105-12-77.

    Article  PubMed  PubMed Central  Google Scholar 

  24. M. Pansini, F. Morsbach, T. Schubert, J. Hohmann, B. Kovács, Z. Szucs-Farkas, S.T. Schindera, Feasibility of Dose Optimization in a Second-Generation Dual-Source CT Scanner for a Manufacturer-Recommended Urolithiasis Protocol for Imaging Renal Stones, AJR Am. J. Roentgenol. 206 (2016) 348–354. https://doi.org/10.2214/AJR.15.15204.

    Article  PubMed  Google Scholar 

  25. C. Thomas, O. Patschan, D. Ketelsen, I. Tsiflikas, A. Reimann, H. Brodoefel, M. Buchgeister, U. Nagele, A. Stenzl, C. Claussen, A. Kopp, M. Heuschmid, H.-P. Schlemmer, Dual-energy CT for the characterization of urinary calculi: In vitro and in vivo evaluation of a low-dose scanning protocol, Eur. Radiol. 19 (2009) 1553–1559. https://doi.org/10.1007/s00330-009-1300-2.

    Article  CAS  PubMed  Google Scholar 

  26. M. Qu, L. Yu, D.G. Cardona, Y. Liu, X. Duan, S. Ai, S. Leng, M. Shiung, C.H. McCollough, Radiation Dose Reduction in Dual-Energy CT: Does It Affect the Accuracy of Urinary Stone Characterization?, AJR Am. J. Roentgenol. 205 (2015) W172-176. https://doi.org/10.2214/AJR.14.12929.

    Article  PubMed  PubMed Central  Google Scholar 

  27. A. Spek, F. Strittmatter, A. Graser, P. Kufer, C. Stief, M. Staehler, Dual energy can accurately differentiate uric acid-containing urinary calculi from calcium stones, World J. Urol. 34 (2016) 1297–1302. https://doi.org/10.1007/s00345-015-1756-4.

    Article  CAS  PubMed  Google Scholar 

  28. G. Apfaltrer, A. Dutschke, P.A.T. Baltzer, C. Schestak, M. Özsoy, C. Seitz, J. Veser, E. Petter, T.H. Helbich, H. Ringl, P. Apfaltrer, Substantial radiation dose reduction with consistent image quality using a novel low-dose stone composition protocol, World J. Urol. (2020). https://doi.org/10.1007/s00345-020-03082-6.

    Article  PubMed  Google Scholar 

  29. H. Mahalingam, A. Lal, A.K. Mandal, S.K. Singh, S. Bhattacharyya, N. Khandelwal, Evaluation of low-dose dual energy computed tomography for in vivo assessment of renal/ureteric calculus composition, Korean J. Urol. 56 (2015) 587–593. https://doi.org/10.4111/kju.2015.56.8.587.

    Article  PubMed  PubMed Central  Google Scholar 

  30. A. Franken, P.A. Gevenois, A.V. Muylem, N. Howarth, C. Keyzer, In Vivo Differentiation of Uric Acid Versus Non-Uric Acid Urinary Calculi With Third-Generation Dual-Source Dual-Energy CT at Reduced Radiation Dose, AJR Am. J. Roentgenol. 210 (2018) 358–363. https://doi.org/10.2214/AJR.17.18091.

    Article  PubMed  Google Scholar 

  31. B. Mussmann, M. Hardy, H. Jung, M. Ding, P.J. Osther, O. Graumann, Can Dual Energy CT with Fast kV-Switching Determine Renal Stone Composition Accurately?, Acad. Radiol. (2020). https://doi.org/10.1016/j.acra.2020.02.007.

    Article  PubMed  Google Scholar 

  32. J.S. Kriegshauser, A.C. Silva, R.G. Paden, M. He, M.R. Humphreys, S.I. Zell, Y. Fu, T. Wu, Ex Vivo Renal Stone Characterization with Single-Source Dual-Energy Computed Tomography: A Multiparametric Approach, Acad. Radiol. 23 (2016) 969–976. https://doi.org/10.1016/j.acra.2016.03.009.

    Article  PubMed  Google Scholar 

  33. R.P. Marcus, J.G. Fletcher, A. Ferrero, S. Leng, A.F. Halaweish, R. Gutjahr, T.J. Vrtiska, M.L. Wells, F.T. Enders, C.H. McCollough, Detection and Characterization of Renal Stones by Using Photon-Counting-based CT, Radiology. 289 (2018) 436–442. https://doi.org/10.1148/radiol.2018180126.

    Article  PubMed  PubMed Central  Google Scholar 

  34. C.H. McCollough, S. Leng, L. Yu, J.G. Fletcher, Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications, Radiology. 276 (2015) 637–653. https://doi.org/10.1148/radiol.2015142631.

    Article  PubMed  PubMed Central  Google Scholar 

  35. F.L. Coe, A. Evan, E. Worcester, Kidney stone disease, J. Clin. Invest. 115 (2005) 2598–2608. https://doi.org/10.1172/JCI26662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Mrs. Sarah Euler for revising the manuscript.

Funding

No funding was provided.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Dominik Nakhostin and André Euler. Statistical analysis was done by Thomas Sartoretti. The first draft of the manuscript was written by Dominik Nakhostin and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Dominik Nakhostin.

Ethics declarations

Conflict of interest

Bernhard Krauss is an employee of Siemens Healthcare GmbH. This author had no control over the data at any point during the study. The other authors do not have any relevant disclosures.

Consent to participate

Not needed because of design as phantom study.

Consent for participation

Not needed because of design as phantom study.

Code availability

Code will be made available upon reasonable request to the corresponding author.

Ethics approval

Not needed because of design as phantom study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhostin, D., Sartoretti, T., Eberhard, M. et al. Low-dose dual-energy CT for stone characterization: a systematic comparison of two generations of split-filter single-source and dual-source dual-energy CT. Abdom Radiol 46, 2079–2089 (2021). https://doi.org/10.1007/s00261-020-02852-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02852-5

Keywords

Navigation