Skip to main content
Log in

Diagnostic performance of the LR-M criteria and spectrum of LI-RADS imaging features among primary hepatic carcinomas

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the diagnostic performance of LR-M criteria for differentiating hepatocellular carcinoma, intrahepatic mass-forming cholangiocarcinoma, and combined hepatocellular-cholangiocarcinoma and to compare the imaging features of each type.

Methods

In this retrospective study, 110 patients were surgically diagnosed with cholangiocarcinoma (n = 67) and combined hepatocellular-cholangiocarcinoma (n = 43) at a single tertiary hospital between 2013 and 2018. Among them, those with risk factors were enrolled (16 cholangiocarcinomas and 33 combined hepatocellular-cholangiocarcinomas). Forty-nine other patients with size-matched hepatocellular carcinoma were selected as a control group. Two independent readers evaluated the imaging findings of the preoperative MRIs based on LI-RADS version 2018 and assigned an LI-RADS category. The diagnostic performance of the LR-M criteria for diagnosing cholangiocarcinoma or combined hepatocellular-cholangiocarcinoma was evaluated, and the imaging features were compared. The imaging findings of the tumors in patients without risk factors (51 cholangiocarcinomas and 10 combined hepatocellular-cholangiocarcinomas) were evaluated for subgroup analysis.

Results

In the non-hepatocellular carcinoma group, 33 patients were categorized into LR-M and 14 patients into LR-5 (67.3% and 28.6%, respectively), while 5 patients with hepatocellular carcinoma were categorized into LR-M and 38 patients into LR-5 (10.2% and 77.6%, respectively). Sensitivity and specificity of the LR-M criteria were 67.3% and 89.8%, respectively. When more than two LR-M features were present, cholangiocarcinoma or combined hepatocellular-cholangiocarcinoma were suggested with a specificity of 95.9%.

Conclusion

The diagnostic performance of the LR-M criteria is acceptable with moderate sensitivity and high specificity for both cholangiocarcinoma and combined hepatocellular-cholangiocarcinoma. Imaging findings of primary hepatic carcinomas should be understood as a spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

iCCA:

Intrahepatic cholangiocarcinoma

cHCC-CCA:

Combined hepatocellular and cholangiocarcinoma

HCC:

Hepatocellular carcinoma

LI-RADS:

Liver Imaging Reporting and Data System

MRI:

Magnetic resonance imaging

AFP:

Alpha-fetoprotein

CA:

Carbohydrate antigen

CEA:

Carcinoembryonic antigen

References

  1. Kim TH, Kim SY, Tang A, Lee JM (2019) Comparison of international guidelines for noninvasive diagnosis of hepatocellular carcinoma: 2018 update. Clin Mol Hepatol. https://doi.org/10.3350/cmh.2018.0090

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sirlin CB, Kielar AZ, Tang A, Bashir MR (2018) LI-RADS: a glimpse into the future. Abdom Radiol (NY) 43(1):231-236. https://doi.org/10.1007/s00261-017-1448-1

    Article  Google Scholar 

  3. Kim YY, Kim MJ, Kim EH, Roh YH, An C (2019) Hepatocellular Carcinoma versus Other Hepatic Malignancy in Cirrhosis: Performance of LI-RADS Version 2018. Radiology 291(1):72-80. https://doi.org/10.1148/radiol.2019181995

    Article  PubMed  Google Scholar 

  4. Ren AH, Zhao PF, Yang DW, Du JB, Wang ZC, Yang ZH (2019) Diagnostic performance of MR for hepatocellular carcinoma based on LI-RADS v2018, compared with v2017. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26640

    Article  PubMed  Google Scholar 

  5. Choi SH, Lee SS, Park SH, Kim KM, Yu E, Park Y, Shin YM, Lee MG (2019) LI-RADS Classification and Prognosis of Primary Liver Cancers at Gadoxetic Acid-enhanced MRI. Radiology 290(2):388-397. https://doi.org/10.1148/radiol.2018181290

    Article  PubMed  Google Scholar 

  6. Zhang T, Huang ZX, Wei Y et al (2019) Hepatocellular carcinoma: Can LI-RADS v2017 with gadoxetic-acid enhancement magnetic resonance and diffusion-weighted imaging improve diagnostic accuracy? World J Gastroenterol 25(5):622-631. https://doi.org/10.3748/wjg.v25.i5.622

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chernyak V, Fowler KJ, Kamaya A et al (2018) Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients. Radiology 289(3):816-830. https://doi.org/10.1148/radiol.2018181494

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu W, Qin J, Guo R, Xie S, Jiang H, Wang X, Kang Z, Wang J, Shan H (2018) Accuracy of the diagnostic evaluation of hepatocellular carcinoma with LI-RADS. Acta Radiol 59(2):140-146. https://doi.org/10.1177/0284185117716700

    Article  PubMed  Google Scholar 

  9. Joo I, Lee JM, Lee SM, Lee JS, Park JY, Han JK (2016) Diagnostic accuracy of liver imaging reporting and data system (LI-RADS) v2014 for intrahepatic mass-forming cholangiocarcinomas in patients with chronic liver disease on gadoxetic acid-enhanced MRI. J Magn Reson Imaging 44(5):1330-1338. https://doi.org/10.1002/jmri.25287

    Article  PubMed  Google Scholar 

  10. Jeon SK, Joo I, Lee DH, Lee SM, Kang HJ, Lee KB, Lee JM (2019) Combined hepatocellular cholangiocarcinoma: LI-RADS v2017 categorisation for differential diagnosis and prognostication on gadoxetic acid-enhanced MR imaging. Eur Radiol 29(1):373-382. https://doi.org/10.1007/s00330-018-5605-x

    Article  PubMed  Google Scholar 

  11. Lee HS, Kim MJ, An C (2019) How to utilize LR-M features of the LI-RADS to improve the diagnosis of combined hepatocellular-cholangiocarcinoma on gadoxetate-enhanced MRI? Eur Radiol 29(5):2408-2416. https://doi.org/10.1007/s00330-018-5893-1

    Article  PubMed  Google Scholar 

  12. Min JH, Kim JM, Kim YK, Kang TW, Lee SJ, Choi GS, Choi SY, Ahn S (2018) Prospective Intraindividual Comparison of Magnetic Resonance Imaging With Gadoxetic Acid and Extracellular Contrast for Diagnosis of Hepatocellular Carcinomas Using the Liver Imaging Reporting and Data System. Hepatology 68(6):2254-2266. https://doi.org/10.1002/hep.30122

    Article  CAS  PubMed  Google Scholar 

  13. Kierans AS, Makkar J, Guniganti P, Cornman-Homonoff J, Lee MJ, Pittman M, Askin G, Hecht EM (2018) Validation of Liver Imaging Reporting and Data System 2017 (LI-RADS) Criteria for Imaging Diagnosis of Hepatocellular Carcinoma. J Magn Reson Imaging. https://doi.org/10.1002/jmri.26329

    Article  PubMed  Google Scholar 

  14. Kim YY, An C, Kim S, Kim MJ (2018) Diagnostic accuracy of prospective application of the Liver Imaging Reporting and Data System (LI-RADS) in gadoxetate-enhanced MRI. Eur Radiol 28(5):2038-2046. https://doi.org/10.1007/s00330-017-5188-y

    Article  PubMed  Google Scholar 

  15. Fowler KJ, Potretzke TA, Hope TA, Costa EA, Wilson SR (2018) LI-RADS M (LR-M): definite or probable malignancy, not specific for hepatocellular carcinoma. Abdom Radiol (NY) 43(1):149-157. https://doi.org/10.1007/s00261-017-1196-2

    Article  Google Scholar 

  16. Sheng RF, Xie YH, Ji Y, Chen CZ, Yang L, Jin KP, Zeng MS (2016) MR comparative study of combined hepatocellular-cholangiocarcinoma in normal, fibrotic, and cirrhotic livers. Abdom Radiol (NY) 41(11):2102-2114. https://doi.org/10.1007/s00261-016-0811-y

    Article  Google Scholar 

  17. de Campos RO, Semelka RC, Azevedo RM, Ramalho M, Heredia V, Armao DM, Woosley JT (2012) Combined hepatocellular carcinoma-cholangiocarcinoma: report of MR appearance in eleven patients. J Magn Reson Imaging 36(5):1139-1147. https://doi.org/10.1002/jmri.23754

    Article  PubMed  Google Scholar 

  18. Wells ML, Venkatesh SK, Chandan VS, Fidler JL, Fletcher JG, Johnson GB, Hough DM, Roberts LR (2015) Biphenotypic hepatic tumors: imaging findings and review of literature. Abdom Imaging 40(7):2293-2305. https://doi.org/10.1007/s00261-015-0433-9

    Article  PubMed  Google Scholar 

  19. Sumiyoshi T, Shima Y, Okabayashi T, Ishikawa A, Matsumoto M, Iwata J, Morita S, Sueda T (2017) Mucinous cholangiocarcinoma: Clinicopathological features of the rarest type of cholangiocarcinoma. Ann Gastroenterol Surg 1(2):114-121. https://doi.org/10.1002/ags3.12016

    Article  PubMed  PubMed Central  Google Scholar 

  20. Horvat N, Nikolovski I, Long N et al (2018) Imaging features of hepatocellular carcinoma compared to intrahepatic cholangiocarcinoma and combined tumor on MRI using liver imaging and data system (LI-RADS) version 2014. Abdom Radiol (NY) 43(1):169-178. https://doi.org/10.1007/s00261-017-1261-x

    Article  Google Scholar 

  21. Sagrini E, Iavarone M, Stefanini F et al (2019) Imaging of combined hepatocellular-cholangiocarcinoma in cirrhosis and risk of false diagnosis of hepatocellular carcinoma. United European Gastroenterol J 7(1):69-77. https://doi.org/10.1177/2050640618815378

    Article  PubMed  Google Scholar 

  22. Shao S, Liang Y, Kuang S et al (2020) Diagnostic performance of LI-RADS version 2018 in differentiating hepatocellular carcinoma from other hepatic malignancies in patients with hepatitis B virus infection. Bosn J Basic Med Sci. https://doi.org/10.17305/bjbms.2019.4576

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tang A, Bashir MR, Corwin MT et al (2018) Evidence Supporting LI-RADS Major Features for CT- and MR Imaging-based Diagnosis of Hepatocellular Carcinoma: A Systematic Review. Radiology 286(1):29-48. https://doi.org/10.1148/radiol.2017170554

    Article  PubMed  Google Scholar 

  24. Fowler KJ, Sheybani A, Parker RA, 3rd, Doherty S, E MB, Chapman WC, Menias CO (2013) Combined hepatocellular and cholangiocarcinoma (biphenotypic) tumors: imaging features and diagnostic accuracy of contrast-enhanced CT and MRI. AJR Am J Roentgenol 201(2):332-339. https://doi.org/10.2214/ajr.12.9488

    Article  PubMed  Google Scholar 

  25. Sempoux C, Kakar S, Kondo F, Schirmacher P (2019) Combined hepatocellular-cholangiocarcinoma and undifferentiated primary liver carcinoma, 5th ed. edn. International Agency for Research on Cancer, Lyon (France)

    Google Scholar 

  26. Brunt E, Aishima S, Clavien PA et al (2018) cHCC-CCA: Consensus terminology for primary liver carcinomas with both hepatocytic and cholangiocytic differentation. Hepatology 68(1):113-126. https://doi.org/10.1002/hep.29789

    Article  PubMed  PubMed Central  Google Scholar 

  27. Park SH, Lee SS, Yu E, Kang HJ, Park Y, Kim SY, Lee SJ, Shin YM, Lee MG (2017) Combined hepatocellular-cholangiocarcinoma: Gadoxetic acid-enhanced MRI findings correlated with pathologic features and prognosis. J Magn Reson Imaging 46(1):267-280. https://doi.org/10.1002/jmri.25568

    Article  PubMed  Google Scholar 

  28. Mao Y, Xu S, Hu W, Huang J, Wang J, Zhang R, Li S (2017) Imaging features predict prognosis of patients with combined hepatocellular-cholangiocarcinoma. Clin Radiol 72(2):129-135. https://doi.org/10.1016/j.crad.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  29. Wang Y, Yang Q, Li S, Luo R, Mao S, Shen J (2019) Imaging features of combined hepatocellular and cholangiocarcinoma compared with those of hepatocellular carcinoma and intrahepatic cholangiocellular carcinoma in a Chinese population. Clin Radiol. https://doi.org/10.1016/j.crad.2019.01.016

    Article  PubMed  PubMed Central  Google Scholar 

  30. Potretzke TA, Tan BR, Doyle MB, Brunt EM, Heiken JP, Fowler KJ (2016) Imaging Features of Biphenotypic Primary Liver Carcinoma (Hepatocholangiocarcinoma) and the Potential to Mimic Hepatocellular Carcinoma: LI-RADS Analysis of CT and MRI Features in 61 Cases. AJR Am J Roentgenol 207(1):25-31. https://doi.org/10.2214/ajr.15.14997

    Article  PubMed  Google Scholar 

  31. Joo I, Lee JM, Yoon JH (2018) Imaging Diagnosis of Intrahepatic and Perihilar Cholangiocarcinoma: Recent Advances and Challenges. Radiology 288(1):7-13. https://doi.org/10.1148/radiol.2018171187

    Article  PubMed  Google Scholar 

  32. Kim SA, Lee JM, Lee KB, Kim SH, Yoon SH, Han JK, Choi BI (2011) Intrahepatic mass-forming cholangiocarcinomas: enhancement patterns at multiphasic CT, with special emphasis on arterial enhancement pattern--correlation with clinicopathologic findings. Radiology 260(1):148-157. https://doi.org/10.1148/radiol.11101777

    Article  PubMed  Google Scholar 

  33. Huang B, Wu L, Lu XY, Xu F, Liu CF, Shen WF, Jia NY, Cheng HY, Yang YF, Shen F (2016) Small Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma in Cirrhotic Livers May Share Similar Enhancement Patterns at Multiphase Dynamic MR Imaging. Radiology 281(1):150-157. https://doi.org/10.1148/radiol.2016151205

    Article  PubMed  Google Scholar 

  34. Xu J, Igarashi S, Sasaki M et al (2012) Intrahepatic cholangiocarcinomas in cirrhosis are hypervascular in comparison with those in normal livers. Liver Int 32(7):1156-1164. https://doi.org/10.1111/j.1478-3231.2012.02783.x

    Article  PubMed  Google Scholar 

  35. Aishima S, Oda Y (2015) Pathogenesis and classification of intrahepatic cholangiocarcinoma: different characters of perihilar large duct type versus peripheral small duct type. J Hepatobiliary Pancreat Sci 22(2):94-100. https://doi.org/10.1002/jhbp.154

    Article  PubMed  Google Scholar 

  36. Fujita N, Asayama Y, Nishie A et al (2017) Mass-forming intrahepatic cholangiocarcinoma: Enhancement patterns in the arterial phase of dynamic hepatic CT - Correlation with clinicopathological findings. Eur Radiol 27(2):498-506. https://doi.org/10.1007/s00330-016-4386-3

    Article  PubMed  Google Scholar 

  37. Hwang J, Kim YK, Park MJ, Lee MH, Kim SH, Lee WJ, Rhim HC (2012) Differentiating combined hepatocellular and cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma using gadoxetic acid-enhanced MRI. J Magn Reson Imaging 36(4):881-889. https://doi.org/10.1002/jmri.23728

    Article  PubMed  Google Scholar 

  38. Sammon J, Fischer S, Menezes R, Hosseini-Nik H, Lewis S, Taouli B, Jhaveri K (2018) MRI features of combined hepatocellular- cholangiocarcinoma versus mass forming intrahepatic cholangiocarcinoma. Cancer Imaging 18(1):8. https://doi.org/10.1186/s40644-018-0142-z

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ding Y, Rao SX, Wang WT, Chen CZ, Li RC, Zeng M (2018) Comparison of gadoxetic acid versus gadopentetate dimeglumine for the detection of hepatocellular carcinoma at 1.5 T using the liver imaging reporting and data system (LI-RADS v.2017). Cancer Imaging 18(1):48. https://doi.org/10.1186/s40644-018-0183-3

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Young Choi.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest related to this manuscript.

Ethics approval

Our institutional review board approved the study (IRB Number: 4-2019-0594); requirement for written informed consent for this retrospective study was waived.

Consent to Participate

Our institutional review board approved the study (IRB Number: 4-2019-0594); requirement for written informed consent for this retrospective study was waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Ss., Lee, S., Choi, JY. et al. Diagnostic performance of the LR-M criteria and spectrum of LI-RADS imaging features among primary hepatic carcinomas. Abdom Radiol 45, 3743–3754 (2020). https://doi.org/10.1007/s00261-020-02562-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02562-y

Keywords

Navigation