Skip to main content

Advertisement

Log in

LI-RADS M (LR-M): definite or probable malignancy, not specific for hepatocellular carcinoma

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

LI-RADS v2017 introduces major changes to the diagnostic criteria for LR-M observations to better guide radiologists in the use of this malignant category designation. LR-M is intended to preserve the specificity of the LI-RADS algorithm for diagnosis of HCC while not losing sensitivity for diagnosis of malignancy. The purpose of this paper is to provide a brief background on LR-M, discuss the diagnostic criteria new to v2017, special considerations for its application, and management implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LI-RADS:

Liver imaging reporting and data system

HCC:

Hepatocellular carcinoma

LR:

LI-RADS category

ICC:

Intrahepatic cholangiocarcinoma

H-ChC:

Hepato-cholangiocarcinoma or combined tumor

MRI:

Magnetic resonance imaging

TIV:

Tumor in vein

CEUS:

Contrast-enhanced ultrasound

CT:

Computed tomography

OPTN:

Organ procurement and transplantation network

References

  1. Siegel R, et al. (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

  2. Khan SA, et al. (2005) Cholangiocarcinoma. Lancet 366(9493):1303–1314

    Article  PubMed  Google Scholar 

  3. Ercolani G, et al. (2010) Intrahepatic cholangiocarcinoma: primary liver resection and aggressive multimodal treatment of recurrence significantly prolong survival. Ann Surg 252(1):107–114

    Article  PubMed  Google Scholar 

  4. Tyson GL, El-Serag HB (2011) Risk factors for cholangiocarcinoma. Hepatology 54(1):173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shaib YH, et al. (2005) Risk factors of intrahepatic cholangiocarcinoma in the United States: a case-control study. Gastroenterology 128(3):620–626

    Article  PubMed  Google Scholar 

  6. Edmondson HA, Steiner PE (1954) Primary carcinoma of the liver: a study of 100 cases among 48,900 necropsies. Cancer 7(3):462–503

    Article  CAS  PubMed  Google Scholar 

  7. Goodman ZD, et al. (1985) Combined hepatocellular-cholangiocarcinoma. A histologic and immunohistochemical study. Cancer 55(1):124–135

    Article  CAS  PubMed  Google Scholar 

  8. Jarnagin WR, et al. (2002) Combined hepatocellular and cholangiocarcinoma: demographic, clinical, and prognostic factors. Cancer 94(7):2040–2046

    Article  PubMed  Google Scholar 

  9. Ng IO, et al. (1998) Combined hepatocellular-cholangiocarcinoma: a clinicopathological study. J Gastroenterol Hepatol 13(1):34–40

    Article  CAS  PubMed  Google Scholar 

  10. Choi SH, et al. (2016) Liver imaging reporting and data system v2014 with gadoxetate disodium-enhanced magnetic resonance imaging: validation of LI-RADS category 4 and 5 criteria. Invest Radiol 51(8):483–490

    Article  CAS  PubMed  Google Scholar 

  11. Chen N, et al. (2016) Added value of a gadoxetic acid-enhanced hepatocyte-phase image to the LI-RADS system for diagnosing hepatocellular carcinoma. Magn Reson Med Sci 15(1):49–59

    Article  PubMed  Google Scholar 

  12. Darnell A, et al. (2015) Liver imaging reporting and data system with MR imaging: evaluation in nodules 20 mm or smaller detected in cirrhosis at screening US. Radiology 275(3):698–707

    Article  PubMed  Google Scholar 

  13. Fowler KJ, et al. (2013) Validation of organ procurement and transplant network (OPTN)/united network for organ sharing (UNOS) criteria for imaging diagnosis of hepatocellular carcinoma. Transplantation 95(12):1506–1511

    Article  PubMed  Google Scholar 

  14. Wald C, et al. (2013) New OPTN/UNOS policy for liver transplant allocation: standardization of liver imaging, diagnosis, classification, and reporting of hepatocellular carcinoma. Radiology 266(2):376–382

    Article  PubMed  Google Scholar 

  15. Bruix J, Sherman M (2011) Management of hepatocellular carcinoma: an update. Hepatology 53(3):1020–1022

    Article  PubMed  PubMed Central  Google Scholar 

  16. Park MJ, et al. (2013) Scirrhous hepatocellular carcinoma on gadoxetic acid-enhanced magnetic resonance imaging and diffusion-weighted imaging: emphasis on the differentiation of intrahepatic cholangiocarcinoma. J Comput Assist Tomogr 37(6):872–881

    Article  PubMed  Google Scholar 

  17. Chong YS, et al. (2012) Differentiating mass-forming intrahepatic cholangiocarcinoma from atypical hepatocellular carcinoma using gadoxetic acid-enhanced MRI. Clin Radiol 67(8):766–773

    Article  CAS  PubMed  Google Scholar 

  18. Kim R, et al. (2016) Differentiation of intrahepatic mass-forming cholangiocarcinoma from hepatocellular carcinoma on gadoxetic acid-enhanced liver MR imaging. Eur Radiol 26(6):1808–1817

    Article  PubMed  Google Scholar 

  19. Rimola J, et al. (2009) Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology 50(3):791–798

    Article  PubMed  Google Scholar 

  20. Asayama Y, et al. (2015) Distinguishing intrahepatic cholangiocarcinoma from poorly differentiated hepatocellular carcinoma using precontrast and gadoxetic acid-enhanced MRI. Diagn Interv Radiol 21(2):96–104

    Article  PubMed  PubMed Central  Google Scholar 

  21. Joo I, et al. (2016) Diagnostic accuracy of liver imaging reporting and data system (LI-RADS) v2014 for intrahepatic mass-forming cholangiocarcinomas in patients with chronic liver disease on gadoxetic acid-enhanced MRI. J Magn Reson Imaging 44(5):1330–1338

    Article  PubMed  Google Scholar 

  22. Huang B, et al. (2016) Small intrahepatic cholangiocarcinoma and hepatocellular carcinoma in cirrhotic livers may share similar enhancement patterns at multiphase dynamic MR imaging. Radiology 281(1):150–157

    Article  PubMed  Google Scholar 

  23. Park HJ, et al. (2016) Identification of imaging predictors discriminating different primary liver tumours in patients with chronic liver disease on gadoxetic acid-enhanced MRI: a classification tree analysis. Eur Radiol 26(9):3102–3111

    Article  PubMed  Google Scholar 

  24. Hwang J, et al. (2012) Differentiating combined hepatocellular and cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma using gadoxetic acid-enhanced MRI. J Magn Reson Imaging 36(4):881–889

    Article  PubMed  Google Scholar 

  25. Peporte AR, et al. (2013) Imaging features of intrahepatic cholangiocarcinoma in Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 82(3):e101–e106

    Article  PubMed  Google Scholar 

  26. Kang Y, et al. (2012) Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology 264(3):751–760

    Article  PubMed  Google Scholar 

  27. Tsunematsu S, et al. (2015) Intratumoral artery on contrast-enhanced computed tomography imaging: differentiating intrahepatic cholangiocarcinoma from poorly differentiated hepatocellular carcinoma. Abdom Imaging 40(6):1492–1499

    Article  PubMed  Google Scholar 

  28. Ciresa M, et al. (2015) Enhancement patterns of intrahepatic mass-forming cholangiocarcinoma at multiphasic computed tomography and magnetic resonance imaging and correlation with clinicopathologic features. Eur Rev Med Pharmacol Sci 19(15):2786–2797

    CAS  PubMed  Google Scholar 

  29. Potretzke TA, et al. (2016) Imaging features of biphenotypic primary liver carcinoma (Hepatocholangiocarcinoma) and the potential to mimic hepatocellular carcinoma: LI-RADS analysis of CT and MRI features in 61 cases. AJR Am J Roentgenol 207(1):25–31

    Article  PubMed  Google Scholar 

  30. Fowler KJ, et al. (2013) Combined hepatocellular and cholangiocarcinoma (biphenotypic) tumors: imaging features and diagnostic accuracy of contrast-enhanced CT and MRI. AJR Am J Roentgenol 201(2):332–339

    Article  PubMed  Google Scholar 

  31. Fukukura Y, et al. (1997) Combined hepatocellular and cholangiocarcinoma: correlation between CT findings and clinicopathological features. J Comput Assist Tomogr 21(1):52–58

    Article  CAS  PubMed  Google Scholar 

  32. Sanada Y, et al. (2005) A clinical study of 11 cases of combined hepatocellular-cholangiocarcinoma assessment of enhancement patterns on dynamics computed tomography before resection. Hepatol Res 32(3):185–195

    Article  PubMed  Google Scholar 

  33. Wells ML, et al. (2015) Biphenotypic hepatic tumors: imaging findings and review of literature. Abdom Imaging 40(7):2293–2305

    Article  PubMed  Google Scholar 

  34. Alustiza JM, et al. (2007) Iron overload in the liver diagnostic and quantification. Eur J Radiol 61(3):499–506

    Article  PubMed  Google Scholar 

  35. Yuan MX, et al. (2016) Factors affecting the enhancement patterns of intrahepatic cholangiocarcinoma (ICC) on contrast-enhanced ultrasound (CEUS) and their pathological correlations in patients with a single lesion. Ultraschall Med 37(6):609–618

    CAS  PubMed  Google Scholar 

  36. Kong WT, et al. (2014) Value of wash-in and wash-out time in the diagnosis between hepatocellular carcinoma and other hepatic nodules with similar vascular pattern on contrast-enhanced ultrasound. J Gastroenterol Hepatol 29(3):576–580

    Article  PubMed  Google Scholar 

  37. Wildner D, et al. (2014) Dynamic contrast-enhanced ultrasound (DCE-US) for the characterization of hepatocellular carcinoma and cholangiocellular carcinoma. Ultraschall Med 35(6):522–527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the LI-RADS v2017 core writing committee members for their dedication to development of LI-RADS and intellectual contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn J. Fowler.

Ethics declarations

Funding

No funding source for this manuscript.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fowler, K.J., Potretzke, T.A., Hope, T.A. et al. LI-RADS M (LR-M): definite or probable malignancy, not specific for hepatocellular carcinoma. Abdom Radiol 43, 149–157 (2018). https://doi.org/10.1007/s00261-017-1196-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1196-2

Keywords

Navigation