Skip to main content

Advertisement

Log in

Rapid kV-switching single-source dual-energy CT ex vivo renal calculi characterization using a multiparametric approach: refining parameters on an expanded dataset

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

We aimed to determine the best algorithms for renal stone composition characterization using rapid kV-switching single-source dual-energy computed tomography (rsDECT) and a multiparametric approach after dataset expansion and refinement of variables.

Methods

rsDECT scans (80 and 140 kVp) were performed on 38 ex vivo 5- to 10-mm renal stones composed of uric acid (UA; n = 21), struvite (STR; n = 5), cystine (CYS; n = 5), and calcium oxalate monohydrate (COM; n = 7). Measurements were obtained for 17 variables: mean Hounsfield units (HU) at 11 monochromatic keV levels, effective Z, 2 iodine-water material basis pairs, and 3 mean monochromatic keV ratios (40/140, 70/120, 70/140). Analysis included using 5 multiparametric algorithms: Support Vector Machine, RandomTree, Artificial Neural Network, Naïve Bayes Tree, and Decision Tree (C4.5).

Results

Separating UA from non-UA stones was 100% accurate using multiple methods. For non-UA stones, using a 70-keV mean cutoff value of 694 HU had 100% accuracy for distinguishing COM from non-COM (CYS, STR) stones. The best result for distinguishing all 3 non-UA subtypes was obtained using RandomTree (15/17, 88%).

Conclusions

For stones 5 mm or larger, multiple methods can distinguish UA from non-UA and COM from non-COM stones with 100% accuracy. Thus, the choice for analysis is per the user’s preference. The best model for separating all three non-UA subtypes was 88% accurate, although with considerable individual overlap between CYS and STR stones. Larger, more diverse datasets, including in vivo data and technical improvements in material separation, may offer more guidance in distinguishing non-UA stone subtypes in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ANN:

Artificial Neural Network

C4.5:

Decision Tree

COM:

Calcium oxalate monohydrate

CT:

Computed tomography

CYS:

Cystine

DECT:

Dual-energy CT

HU:

Hounsfield unit

NBTree:

Naïve Bayes Tree

rsDECT:

Rapid kV-switching single-source DECT

STR:

Struvite

SVM:

Support Vector Machine

UA:

Uric acid

References

  1. Curhan GC (2007) Epidemiology of stone disease. Urol Clin North Am 34(3):287–293

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pak CY, Poindexter JR, Adams-Huet B, Pearle MS (2003) Predictive value of kidney stone composition in the detection of metabolic abnormalities. Am J Med 115(1):26–32

    Article  CAS  PubMed  Google Scholar 

  3. Romero V, Akpinar H, Assimos DG (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 12(2-3):e86–e96

    PubMed  PubMed Central  Google Scholar 

  4. Sakhaee K, Maalouf NM, Sinnott B (2012) Clinical review: kidney stones 2012: pathogenesis, diagnosis, and management. J Clin Endocrinol Metab 97(6):1847–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976-1994. Kidney Int 63(5):1817–1823

    Article  PubMed  Google Scholar 

  6. Kriegshauser JS, Silva AC, Paden RG, et al. (2016) Ex vivo renal stone characterization with single-source dual-energy computed tomography: a multiparametric approach. Acad Radiol 23(8):969–976

    Article  PubMed  Google Scholar 

  7. Hall PM (2009) Nephrolithiasis: treatment, causes, and prevention. Cleve Clin J Med 76(10):583–591

    Article  PubMed  Google Scholar 

  8. Uribarri J, Oh MS, Carroll HJ (1989) The first kidney stone. Ann Intern Med 111(12):1006–1009

    Article  CAS  PubMed  Google Scholar 

  9. Graser A, Johnson TR, Bader M, et al. (2008) Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience. Invest Radiol 43(2):112–119

    Article  PubMed  Google Scholar 

  10. Hidas G, Eliahou R, Duvdevani M, et al. (2010) Determination of renal stone composition with dual-energy CT: in vivo analysis and comparison with X-ray diffraction. Radiology 257(2):394–401

    Article  PubMed  Google Scholar 

  11. Kulkarni NM, Eisner BH, Pinho DF, et al. (2013) Determination of renal stone composition in phantom and patients using single-source dual-energy computed tomography. J Comput Assist Tomogr 37(1):37–45

    Article  PubMed  Google Scholar 

  12. Manglaviti G, Tresoldi S, Guerrer CS, et al. (2011) In vivo evaluation of the chemical composition of urinary stones using dual-energy CT. Am J Roentgenol 197(1):W76–W83

    Article  Google Scholar 

  13. Primak AN, Fletcher JG, Vrtiska TJ, et al. (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14(12):1441–1447

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thomas C, Patschan O, Ketelsen D, et al. (2009) Dual-energy CT for the characterization of urinary calculi: in vitro and in vivo evaluation of a low-dose scanning protocol. Eur Radiol 19(6):1553–1559

    Article  CAS  PubMed  Google Scholar 

  15. Thomas C, Krauss B, Ketelsen D, et al. (2010) Differentiation of urinary calculi with dual energy CT: effect of spectral shaping by high energy tin filtration. Invest Radiol 45(7):393–398

    PubMed  Google Scholar 

  16. Zilberman DE, Ferrandino MN, Preminger GM, et al. (2010) In vivo determination of urinary stone composition using dual energy computerized tomography with advanced post-acquisition processing. J Urol 184(6):2354–2359

    Article  CAS  PubMed  Google Scholar 

  17. Stolzmann P, Kozomara M, Chuck N, et al. (2010) In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging 35(5):629–635

    Article  PubMed  Google Scholar 

  18. Boll DT, Patil NA, Paulson EK, et al. (2009) Renal stone assessment with dual-energy multidetector CT and advanced postprocessing techniques: improved characterization of renal stone composition: pilot study. Radiology 250(3):813–820

    Article  PubMed  Google Scholar 

  19. Berger MJ, Hubbell JH, Seltzer SM, Chang J, Coursey JS, Sukumar R, et al. XCOM: photon cross sections database. NIST standard reference database 8 (XGAM), 1998;8(1):3587–3597.

  20. Hall M, Frank E, Holmes G, et al. (2009) The WEKA data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18

    Article  Google Scholar 

  21. Eliahou R, Hidas G, Duvdevani M, Sosna J (2010) Determination of renal stone composition with dual-energy computed tomography: an emerging application. Semin Ultrasound CT MR 31(4):315–320

    Article  PubMed  Google Scholar 

  22. Schubert G (2006) Stone analysis. Urol Res 34(2):146–150

    Article  PubMed  Google Scholar 

  23. Ascenti G, Siragusa C, Racchiusa S, et al. (2010) Stone-targeted dual-energy CT: a new diagnostic approach to urinary calculosis. Am J Roentgenol 195(4):953–958

    Article  Google Scholar 

  24. Mostafavi MR, Ernst RD, Saltzman B (1998) Accurate determination of chemical composition of urinary calculi by spiral computerized tomography. J Urol 159(3):673–675

    Article  CAS  PubMed  Google Scholar 

  25. Qu M, Ramirez-Giraldo JC, Leng S, et al. (2011) Dual-energy dual-source CT with additional spectral filtration can improve the differentiation of non-uric acid renal stones: an ex vivo phantom study. Am J Roentgenol 196(6):1279–1287

    Article  Google Scholar 

  26. Silva AC, Morse BG, Hara AK, et al. (2011) Dual-energy (spectral) CT: applications in abdominal imaging. Radiographics 31(4):1031–1046

    Article  PubMed  Google Scholar 

  27. Stolzmann P, Leschka S, Scheffel H, et al. (2010) Characterization of urinary stones with dual-energy CT: improved differentiation using a tin filter. Invest Radiol 45(1):1–6

    Article  PubMed  Google Scholar 

  28. Stolzmann P, Scheffel H, Rentsch K, et al. (2008) Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res 36(3–4):133–138

    Article  PubMed  Google Scholar 

  29. Wisenbaugh ES, Paden RG, Silva AC, Humphreys MR (2014) Dual-energy vs conventional computed tomography in determining stone composition. Urology 83(6):1243–1247

    Article  PubMed  Google Scholar 

  30. Mileto A, Nelson RC, Samei E, et al. (2014) Impact of dual-energy multi-detector row CT with virtual monochromatic imaging on renal cyst pseudoenhancement: in vitro and in vivo study. Radiology 272(3):767–776

    Article  PubMed  Google Scholar 

  31. Li X, Zhao R, Liu B, Yu Y (2013) Gemstone spectral imaging dual-energy computed tomography: a novel technique to determine urinary stone composition. Urology 81(4):727–730

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Scott Kriegshauser.

Ethics declarations

Conflict of interest

The authors have no sources of funding or conflicts of interest to declare.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments. This study was compliant with the Health Insurance Portability and Accountability Act of 1996 and was approved by our Institutional Review Board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kriegshauser, J.S., Paden, R.G., He, M. et al. Rapid kV-switching single-source dual-energy CT ex vivo renal calculi characterization using a multiparametric approach: refining parameters on an expanded dataset. Abdom Radiol 43, 1439–1445 (2018). https://doi.org/10.1007/s00261-017-1331-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1331-0

Keywords

Navigation