Skip to main content

Advertisement

Log in

Differentiation of lipid poor angiomyolipoma from hepatocellular carcinoma on gadoxetic acid-enhanced liver MR imaging

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

To investigate magnetic resonance (MR) findings of angiomyolipoma (AML) on gadoxetic acid-enhanced MR imaging, and to identify features that differentiate AML from hepatocellular carcinoma (HCC) in patients with a low risk of HCC development.

Methods

This retrospective study was institutional review board approved, and the requirement for informed consent was waived. Twelve patients with hepatic AML who underwent gadoxetic acid-enhanced MRI with no risk factors for HCC development were recruited. Twenty-seven patients with HCC under the same inclusion criteria were recruited as control. Two radiologists analyzed the images in consensus for morphologic features, enhancement patterns, and hepatobiliary phase (HBP) findings. All results were analyzed using the Mann–Whitney test, two-tailed Fisher exact test, and chi-square test.

Results

Patients with AML were younger than those with HCC (48.8 ± 15 years for AML vs. 62.7 ± 14.2 years for HCC, p = 0.008) with female predominance, while most HCC patients were male (75% (9/12) vs. 15% (4/27), p < 0.001). The most prevalent enhancement pattern was arterial enhancement followed by hypointensity at portal or transitional phases for both AMLs (58% (7/12)) and HCCs (74% (20/27)) (p = 0.455). However, during the HBP, AMLs frequently showed more homogeneous hypointensity than HCCs (83% (10/12) vs. 41% (11/27), p = 0.018). When compared with the signal intensity of the spleen, the mean relative signal intensity of the AML was 91.2 ± 15.4%, while in HCCs, it was 128.7 ± 40% (p < 0.001).

Conclusions

Although AMLs showed similar enhancement patterns to HCCs during the dynamic phases of gadoxetic acid-enhanced MRI, using characteristic MR features of AML during the HBP and demographic differences, one can better differentiate AML from HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Li T, Wang L, Yu HH, et al. (2008) Hepatic angiomyolipoma: a retrospective study of 25 cases. Surg Today 38:529–535

    Article  CAS  PubMed  Google Scholar 

  2. Xu PJ, Shan Y, Yan FH, et al. (2009) Epithelioid angiomyolipoma of the liver: cross-sectional imaging findings of 10 immunohistochemically-verified cases. World J Gastroenterol 15:4576–4581

    Article  PubMed Central  PubMed  Google Scholar 

  3. Basaran C, Karcaaltincaba M, Akata D, et al. (2005) Fat-containing lesions of the liver: cross-sectional imaging findings with emphasis on MRI. Am J Roentgenol 184:1103–1110

    Article  Google Scholar 

  4. Chang Z, Zhang JM, Ying JQ, Ge YP (2011) Characteristics and treatment strategy of hepatic angiomyolipoma: a series of 94 patients collected from four institutions. J Gastrointest Liver Dis 20:65–69

    Google Scholar 

  5. Jeon TY, Kim SH, Lim HK, Lee WJ (2010) Assessment of triple-phase CT findings for the differentiation of fat-deficient hepatic angiomyolipoma from hepatocellular carcinoma in non-cirrhotic liver. Eur J Radiol 73:601–606

    Article  PubMed  Google Scholar 

  6. Yoshimura H, Murakami T, Kim T, et al. (2002) Angiomyolipoma of the liver with least amount of fat component: imaging features of CT, MR, and angiography. Abdom Imaging 27:184–187

    Article  CAS  PubMed  Google Scholar 

  7. Montoriol P, Joubert-Zakeyh J, Buc E, Garcier J, Da Ines D (2013) Fat-deficient hepatic angiomyolipoma: a radiological challenge. Diagn Interv Imaging 94:909–911

    Article  PubMed  Google Scholar 

  8. Yeh CN, Chen MF, Hung CF, Chen TC, Chao TC (2001) Angiomyolipoma of the liver. J Surg Oncol 77:195–200

    Article  CAS  PubMed  Google Scholar 

  9. Chung AYF, Ng S-B, Thng C-H, Ooi LPJ, Chow PKH (2002) Hepatic angiomyolipoma mimicking hepatocellular carcinoma. Asian J Surg 25:251–254

    Article  PubMed  Google Scholar 

  10. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362:1907–1917

    Article  PubMed  Google Scholar 

  11. Trevisani F, Frigerio M, Santi V, Grignaschi A, Bernardi M (2010) Hepatocellular carcinoma in non-cirrhotic liver: a reappraisal. Dig Liver Dis 42:341–347

    Article  PubMed  Google Scholar 

  12. Nonomura A, Mizukami Y, Kadoya M (1994) Angiomyolipoma of the liver: a collective review. J Gastroenterol 29:95–105

    Article  CAS  PubMed  Google Scholar 

  13. Wang SY, Kuai XP, Meng XX, Jia NY, Dong H (2014) Comparison of MRI features for the differentiation of hepatic angiomyolipoma from fat-containing hepatocellular carcinoma. Abdom Imaging 39:323–333

    Article  PubMed  Google Scholar 

  14. Zhao Y, Ouyang H, Wang X, Ye F, Liang J (2014) MRI manifestations of liver epithelioid and nonepithelioid angiomyolipoma. J Magn Reson Imaging 39:1502–1508

    Article  PubMed  Google Scholar 

  15. Cai PQ, Wu YP, Xie CM, et al. (2013) Hepatic angiomyolipoma: CT and MR imaging findings with clinical-pathologic comparison. Abdom Imaging 38:482–489

    Article  PubMed  Google Scholar 

  16. Hu WG, Lai EC, Liu H, et al. (2011) Diagnostic difficulties and treatment strategy of hepatic angiomyolipoma. Asian J Surg 34:158–162

    Article  PubMed  Google Scholar 

  17. Lee J, Lee JM, Yoon JH, et al. (2012) Percutaneous radiofrequency ablation with multiple electrodes for medium-sized hepatocellular carcinomas. Korean J Radiol 13:34–43

  18. Lee JM, Zech CJ, Bolondi L, et al. (2011) Consensus report of the 4th international forum for gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid magnetic resonance imaging. Korean J Radiol 12:403–415

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sun HY, Lee JM, Shin CI, et al. (2010) Gadoxetic acid-enhanced magnetic resonance imaging for differentiating small hepatocellular carcinomas (<or = 2 cm in diameter) from arterial enhancing pseudolesions: special emphasis on hepatobiliary phase imaging. Investig Radiol 45:96–103

    Article  CAS  Google Scholar 

  20. Lee KH, Lee JM, Park JH, et al. (2013) MR imaging in patients with suspected liver metastases: value of liver-specific contrast agent gadoxetic acid. Korean J Radiol 14:894–904

  21. Anysz-Grodzicka A, Pacho R, Grodzicki M, et al. (2013) Angiomyolipoma of the liver: analysis of typical features and pitfalls based on own experience and literature. Clin Imaging 37:320–326

    Article  PubMed  Google Scholar 

  22. Boraschi P, Donati F, Gherarducci G (2012) Imaging findings in myomatous angiomyolipoma of the liver. Diagn Interv Radiol 18:387–390

    PubMed  Google Scholar 

  23. Merkle EM, Nelson RC (2006) Dual gradient-echo in-phase and opposed-phase hepatic MR imaging: a useful tool for evaluating more than fatty infiltration or fatty sparing. Radiographics 26:1409–1418

    Article  PubMed  Google Scholar 

  24. Kelekis NL, Semelka RC, Worawattanakul S, et al. (1998) Hepatocellular carcinoma in North America: a multiinstitutional study of appearance on T1-weighted, T2-weighted, and serial gadolinium-enhanced gradient-echo images. Am J Roentgenol 170:1005–1013

    Article  CAS  Google Scholar 

  25. Hussain SM, Zondervan PE, IJzermans JN, et al. (2002) Benign versus malignant hepatic nodules: MR imaging findings with pathologic correlation. Radiographics 22:1023–1036

    Article  PubMed  Google Scholar 

  26. Elsayes KM, Narra VR, Yin Y, et al. (2005) Focal hepatic lesions: diagnostic value of enhancement pattern approach with contrast-enhanced 3D gradient-echo MR imaging. Radiographics 25:1299–1320

    Article  PubMed  Google Scholar 

  27. Tublin ME, Dodd GD, Baron RI (1997) Benign and malignant portal vein thrombosis: differentiation by CT characteristics. Am J Roentgenol 168:719–723

    Article  CAS  Google Scholar 

  28. Marrero JA, Hussain HK, Nghiem HV, et al. (2005) Improving the prediction of hepatocellular carcinoma in cirrhotic patients with an arterially-enhancing liver mass. Liver Transpl 11:281–289

    Article  PubMed  Google Scholar 

  29. Rimola J, Forner A, Reig M, et al. (2009) Cholangiocarcinoma in cirrhosis: absence of contrast washout in delayed phases by magnetic resonance imaging avoids misdiagnosis of hepatocellular carcinoma. Hepatology 50:791–798

    Article  PubMed  Google Scholar 

  30. Ni Y, Chen F, Wang H, et al. (2010) Proper definitions of MRI contrast enhancement in liver tumors. J Gastroenterol 45:349–350

    Article  PubMed  Google Scholar 

  31. Zizka J, Klzo L, Ferda J, Mrklovsky M, Bukac J (2007) Dynamic and delayed contrast enhancement in upper abdominal MRI studies: comparison of gadoxetic acid and gadobutrol. Eur J Radiol 62:186–191

    Article  PubMed  Google Scholar 

  32. Motosugi U, Ichikawa T, Sou H, et al. (2009) Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging 30:1042–1046

    Article  PubMed  Google Scholar 

  33. Kobayashi S, Matsui O, Gabata T, et al. (2012) Intranodular signal intensity analysis of hypovascular high-risk borderline lesions of HCC that illustrate multi-step hepatocarcinogenesis within the nodule on Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 81:3839–3845

    Article  PubMed  Google Scholar 

  34. Kitao A, Matsui O, Yoneda N, et al. (2011) The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging. Eur Radiology 21:2056–2066

    Article  Google Scholar 

  35. Kitao A, Zen Y, Matsui O, et al. (2010) Hepatocellular carcinoma: signal intensity at gadoxetic acid-enhanced MR Imaging-correlation with molecular transporters and histopathologic features. Radiology 256:817–826

    Article  PubMed  Google Scholar 

  36. Hogemann D, Flemming P, Kreipe H, Galanski M (2001) Correlation of MRI and CT findings with histopathology in hepatic angiomyolipoma. Eur Radiology 11:1389–1395

    Article  CAS  Google Scholar 

  37. Ahmadi T, Itai Y, Takahashi M, et al. (1998) Angiomyolipoma of the liver: significance of CT and MR dynamic study. Abdom Imaging 23:520–526

    Article  CAS  PubMed  Google Scholar 

  38. Reimer P, Schneider G, Schima W (2004) Hepatobiliary contrast agents for contrast-enhanced MRI of the liver: properties, clinical development and applications. Eur Radiology 14:559–578

    Article  Google Scholar 

  39. Husarik DB, Gupta RT, Ringe KI, Boll DT, Merkle EM (2011) Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents. Acad Radiology 18:1549–1554

    Article  Google Scholar 

  40. Jeong HT, Kim MJ, Chung YE, et al. (2013) Gadoxetate disodium-enhanced MRI of mass-forming intrahepatic cholangiocarcinomas: imaging-histologic correlation. Am J Roentgenol 201:W603–W611

    Article  Google Scholar 

  41. Ding GH, Liu Y, Mc Wu, et al. (2011) Diagnosis and treatment of hepatic angiomyolipoma. J Surg Oncol 103:807–812

    Article  PubMed  Google Scholar 

  42. Israel GM, Hindman N, Hecht E, Krinsky G (2005) The use of opposed-phase chemical shift MRI in the diagnosis of renal angiomyolipomas. Am J Roentgenol 184:1868–1872

    Article  Google Scholar 

  43. Earls JP, Krinsky GA (1997) Abdominal and pelvic applications of opposed-phase MR imaging. Am J Roentgenol 169:1071–1077

    Article  CAS  Google Scholar 

  44. Hindman N, Ngo L, Genega EM, et al. (2012) Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology 265:468–477

    Article  PubMed Central  PubMed  Google Scholar 

  45. Hassan M, El-Hefnawy AS, Elshal AM, et al. (2014) Renal epithelioid angiomyolipoma: a rare variant with unusual behavior. Int Urol Nephrol 46:314–322

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Min Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, R., Lee, J.M., Joo, I. et al. Differentiation of lipid poor angiomyolipoma from hepatocellular carcinoma on gadoxetic acid-enhanced liver MR imaging. Abdom Imaging 40, 531–541 (2015). https://doi.org/10.1007/s00261-014-0244-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0244-4

Keywords

Navigation