Skip to main content

Advertisement

Log in

Prospective evaluation of prior image constrained compressed sensing (PICCS) algorithm in abdominal CT: a comparison of reduced dose with standard dose imaging

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

To prospectively study CT dose reduction using the “prior image constrained compressed sensing” (PICCS) reconstruction technique.

Methods

Immediately following routine standard dose (SD) abdominal MDCT, 50 patients (mean age, 57.7 years; mean BMI, 28.8) underwent a second reduced dose (RD) scan (targeted dose reduction, 70%–90%). DLP, CTDIvol, and SSDE were compared. Several reconstruction algorithms (FBP, ASIR, and PICCS) were applied to the RD series. SD images with FBP served as reference standard. Two blinded readers evaluated each series for subjective image quality and focal lesion detection.

Results

Mean DLP, CTDIvol, and SSDE for RD series were 140.3 mGy cm (median 79.4), 3.7 mGy (median 1.8), and 4.2 mGy (median 2.3) compared with 493.7 mGy cm (median 345.8), 12.9 mGy (median 7.9 mGy), and 14.6 mGy (median 10.1) for SD series, respectively. Mean effective patient diameter was 30.1 cm (median 30), which translates to a mean SSDE reduction of 72% (P < 0.001). RD-PICCS image quality score was 2.8 ± 0.5, improved over the RD-FBP (1.7 ± 0.7) and RD-ASIR (1.9 ± 0.8) (P < 0.001), but lower than SD (3.5 ± 0.5) (P < 0.001). Readers detected 81% (184/228) of focal lesions on RD-PICCS series, vs. 67% (153/228) and 65% (149/228) for RD-FBP and RD-ASIR, respectively. Mean image noise was significantly reduced on RD-PICCS series (13.9 HU) compared with RD-FBP (57.2) and RD-ASIR (44.1) (P < 0.001).

Conclusion

PICCS allows for marked dose reduction at abdominal CT with improved image quality and diagnostic performance over reduced dose FBP and ASIR. Further study is needed to determine indication-specific dose reduction levels that preserve acceptable diagnostic accuracy relative to higher dose protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284

    Article  CAS  PubMed  Google Scholar 

  2. Mahesh M (2009) NCRP report number 160: its significance to medical imaging. J Am Coll Radiol 6(12):890–892

    Article  PubMed  Google Scholar 

  3. Measurements NCoRPa (1987) Ionizing radiation exposure of the population of the United States. Bethesda: NCoRPa

  4. Pearce MS, Salotti JA, Little MP, et al. (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380(9840):499–505

    Article  PubMed Central  PubMed  Google Scholar 

  5. McCollough CH, Primak AN, Braun N, et al. (2009) Strategies for reducing radiation dose in CT. Radiol Clin N Am 47(1):27–40

    Article  PubMed Central  PubMed  Google Scholar 

  6. Mulkens TH, Bellinck P, Baeyaert M, et al. (2005) Use of an automatic exposure control mechanism for dose optimization in multi-detector row CT examinations: clinical evaluation. Radiology 237(1):213–223

    Article  PubMed  Google Scholar 

  7. McCollough CH, Bruesewitz MR, Kofler JM Jr (2006) CT dose reduction and dose management tools: overview of available options. Radiographics 26(2):503–512

    Article  PubMed  Google Scholar 

  8. Graser A, Wintersperger BJ, Suess C, Reiser MF, Becker CR (2006) Dose reduction and image quality in MDCT colonography using tube current modulation. AJR Am J Roentgenol 187(3):695–701

    Article  CAS  PubMed  Google Scholar 

  9. Greess H, Wolf H, Baum U, et al. (2000) Dose reduction in computed tomography by attenuation-based on-line modulation of tube current: evaluation of six anatomical regions. Eur Radiol 10(2):391–394

    Article  CAS  PubMed  Google Scholar 

  10. McCollough CH (2005) Automatic exposure control in CT: are we done yet? Radiology 237(3):755–756

    Article  PubMed  Google Scholar 

  11. Gies M, Kalender WA, Wolf H, Suess C (1999) Dose reduction in CT by anatomically adapted tube current modulation. I. Simulation studies. Med Phys 26(11):2235–2247

    Article  CAS  PubMed  Google Scholar 

  12. Kalender WA, Wolf H, Suess C (1999) Dose reduction in CT by anatomically adapted tube current modulation. II. Phantom measurements. Med Phys 26(11):2248–2253

    Article  CAS  PubMed  Google Scholar 

  13. Haaga JR, Miraldi F, MacIntyre W, et al. (1981) The effect of mAs variation upon computed tomography image quality as evaluated by in vivo and in vitro studies. Radiology 138(2):449–454

    Article  CAS  PubMed  Google Scholar 

  14. Goetti R, Winklehner A, Gordic S, et al. (2012) Automated attenuation-based kilovoltage selection: preliminary observations in patients after endovascular aneurysm repair of the abdominal aorta. AJR Am J Roentgenol 199(3):W380–W385

    Article  PubMed  Google Scholar 

  15. Supanich M, Tao Y, Nett B, et al. (2009) Radiation dose reduction in time-resolved CT angiography using highly constrained back projection reconstruction. Phys Med Biol 54(14):4575–4593

    Article  PubMed Central  PubMed  Google Scholar 

  16. Marin D, Nelson RC, Schindera ST, et al. (2010) Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm—initial clinical experience. Radiology 254(1):145–153

    Article  PubMed  Google Scholar 

  17. Prakash P, Kalra MK, Kambadakone AK, et al. (2010) Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Invest Radiol 45(4):202–210

    Article  PubMed  Google Scholar 

  18. Silva AC, Lawder HJ, Hara A, Kujak J, Pavlicek W (2010) Innovations in CT dose reduction strategy: application of the adaptive statistical iterative reconstruction algorithm. AJR Am J Roentgenol 194(1):191–199

    Article  PubMed  Google Scholar 

  19. Thibault JB, Sauer KD, Bouman CA, Hsieh J (2007) A three-dimensional statistical approach to improved image quality for multislice helical CT. Med Phys 34(11):4526–4544

    Article  PubMed  Google Scholar 

  20. Chen GH, Tang J, Leng S (2008) Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets. Med Phys 35(2):660–663

    Article  PubMed Central  PubMed  Google Scholar 

  21. Pickhardt PJ, Lubner MG, Kim DH, et al. (2012) Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. AJR Am J Roentgenol 199(6):1266–1274

    Article  PubMed Central  PubMed  Google Scholar 

  22. Chang W, Lee JM, Lee K, et al. (2013) Assessment of a model-based, iterative reconstruction algorithm (MBIR) regarding image quality and dose reduction in liver computed tomography. Invest Radiol 48:598–606

    Article  CAS  PubMed  Google Scholar 

  23. Hara AK, Paden RG, Silva AC, et al. (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193(3):764–771

    Article  PubMed  Google Scholar 

  24. Sagara Y, Hara AK, Pavlicek W, et al. (2010) Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. AJR Am J Roentgenol 195(3):713–719

    Article  PubMed  Google Scholar 

  25. Kambadakone AR, Chaudhary NA, Desai GS, et al. (2011) Low-dose MDCT and CT enterography of patients with Crohn disease: feasibility of adaptive statistical iterative reconstruction. AJR Am J Roentgenol 196(6):W743–W752

    Article  PubMed  Google Scholar 

  26. Mitsumori LM, Shuman WP, Busey JM, Kolokythas O, Koprowicz KM (2012) Adaptive statistical iterative reconstruction versus filtered back projection in the same patient: 64 channel liver CT image quality and patient radiation dose. Eur Radiol 22(1):138–143

    Article  PubMed  Google Scholar 

  27. McCollough CH, Chen GH, Kalender W, et al. (2012) Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. Radiology 264(2):567–580

    Article  PubMed Central  PubMed  Google Scholar 

  28. Lubner MG, Pickhardt PJ, Tang J, Chen GH (2011) Reduced image noise at low-dose multidetector CT of the abdomen with prior image constrained compressed sensing algorithm. Radiology 260(1):248–256

    Article  PubMed  Google Scholar 

  29. McCollough C, Cody D, Edyvean S, et al. (2008) The measurement, reporting and management of radiation dose in CT. College Park: American Association of Physicists in Medicine

    Google Scholar 

  30. Deak PD, Smal Y, Kalender WA (2010) Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 257(1):158–166

    Article  PubMed  Google Scholar 

  31. Boone JM, Strauss KJ, Cody DD, et al. (2011) Size-specific dose estimates (SSDE) in pediatric and adult body CT examinations. College Park: American Association of Physicists in Medicine

    Google Scholar 

  32. Bankier AA, Kressel HY (2012) Through the looking glass revisited: the need for more meaning and less drama in the reporting of dose and dose reduction in CT. Radiology 265(1):4–8

    Article  PubMed  Google Scholar 

  33. Flicek KT, Hara AK, Silva AC, et al. (2010) Reducing the radiation dose for CT colonography using adaptive statistical iterative reconstruction: a pilot study. AJR Am J Roentgenol 195(1):126–131

    Article  PubMed  Google Scholar 

  34. Tang JT-LP, Chen G-H (2011) In: Proceedings of SPIE, Medical Imaging. Physics of Medical Imaging, vol 7961

  35. Agresti ACB (1998) Approximate is better than “Exact” for interval estimation of binomial proportions. Am Stat 52(2):119–126

    Google Scholar 

  36. Pinheiro JCBD (2000) Mixed-effects models in S and S-PLUS. New York: Springer

    Book  Google Scholar 

  37. R Development Core Team (2009) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing

    Google Scholar 

  38. Singh S, Kalra MK, Hsieh J, et al. (2010) Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology 257(2):373–383

    Article  PubMed  Google Scholar 

  39. Noel PB, Fingerle AA, Renger B, et al. (2011) Initial performance characterization of a clinical noise-suppressing reconstruction algorithm for MDCT. AJR Am J Roentgenol 197(6):1404–1409

    Article  PubMed  Google Scholar 

  40. Lee SJ, Park SH, Kim AY, et al. (2011) A prospective comparison of standard-dose CT enterography and 50% reduced-dose CT enterography with and without noise reduction for evaluating Crohn disease. AJR Am J Roentgenol 197(1):50–57

    Article  PubMed  Google Scholar 

  41. Gervaise A, Osemont B, Lecocq S, et al. (2012) CT image quality improvement using Adaptive iterative dose reduction with wide-volume acquisition on 320-detector CT. Eur Radiol 22(2):295–301

    Article  PubMed  Google Scholar 

  42. Baker ME, Dong F, Primak A, et al. (2012) Contrast-to-noise ratio and low-contrast object resolution on full- and low-dose MDCT: SAFIRE versus filtered back projection in a low-contrast object phantom and in the liver. AJR Am J Roentgenol 199(1):8–18

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by NIH Grant funding R01CA169331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghan G. Lubner.

Appendix

Appendix

See Table 9.

Table 9 Abdominal MDCT “standard-dose” protocols utilized in the prospective trial

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubner, M.G., Pickhardt, P.J., Kim, D.H. et al. Prospective evaluation of prior image constrained compressed sensing (PICCS) algorithm in abdominal CT: a comparison of reduced dose with standard dose imaging. Abdom Imaging 40, 207–221 (2015). https://doi.org/10.1007/s00261-014-0178-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0178-x

Keywords

Navigation