Skip to main content
Log in

Diffusion-weighted imaging (DWI) of adenomyosis and fibroids of the uterus

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Purpose

Although magnetic resonance imaging is often able to distinguish between adenomyosis and fibroids, occasionally the imaging features of focal adenomyosis and fibroids overlap. Diffusion-weighted imaging (DWI) may provide useful information in differentiating pathologies. Therefore, the purpose of our study was to evaluate differences, if any, in the apparent diffusion coefficient (ADC) values of fibroids and adenomyosis.

Material and methods

Patients (n = 50) with uterine fibroids and adenomyosis (n = 43), who underwent pelvic MR imaging including DWI, were included in this IRB approved HIPPA compliant retrospective study. DWI was performed with b factors of 50, 400, and 800 s/mm using a 1.5 T scanner. ADC ROI measurements were placed over a fibroid, an area of adenomyosis, unaffected normal myometrium, skeletal muscle, and urine. Histogram analysis of ADC maps in 20 cases each of adenomyosis and fibroids was evaluated to assess the degree of tissue heterogeneity.

Results

The ADC values of adenomyosis and fibroids were compared using Student’s t test. The mean and the standard deviation of the ADC values of the control group were as follows: fibroid 0.64 ± 0.29, adenomyosis 0.86 ± 0.30, myometrium 1.39 ± 0.36, and urine 3.01 ± 0.2 × 10−3 mm2/s. There was a statistically significant difference among the ADC values of normal myometrium and fibroids (p < 0.0001), normal myometrium and adenomyosis (p < 0.0001), and fibroids and adenomyosis (p < 0.001). Histogram analysis demonstrates less heterogeneity of adenomyosis as compared to fibroids.

Conclusion

The present study shows that ADC measurements have the potential to quantitatively differentiate between fibroids and adenomyosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegler AM, Camilien L (1994) Adenomyosis. J Reprod Med 39:841–853

    CAS  PubMed  Google Scholar 

  2. Aziz R (1989) Adenomyosis: current perspectives. Obstet Gynecol Clin N Am 16:221–235

    Google Scholar 

  3. Ferenczy A (1998) Pathophysiology of adenomyosis. Hum Reprod Update 4(4):312–322

    Article  CAS  PubMed  Google Scholar 

  4. Tamai K, Togashi K, Ito T, et al. (2005) MR imaging findings of adenomyosis: correlation with histopathologic features and diagnostic pitfalls. Radiographics 25(1):21–40 (Review)

    Article  PubMed  Google Scholar 

  5. Reinhold C, McCarthy S, Bret PM, et al. (1996) Diffuse adenomyosis: comparison of endovaginal US and MR imaging with histopathologic correlation. Radiology 199(1):151–158

    CAS  PubMed  Google Scholar 

  6. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. AJR Am J Roentgenol 188(6):1622–1635

    Article  PubMed  Google Scholar 

  7. Padhani AR, Guoying L, Dow M, et al. (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11(2):102–125

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Chenevert TL, Galban CJ, Ivancevic MK, et al. (2011) Diffusion coefficient measurement using a temperature controlled fluid for quality control in multi-center studies. J Magn Reson Imaging 34:983–987

    Article  PubMed Central  PubMed  Google Scholar 

  9. Nishizawa S, Imai S, Okaneya T, et al. (2010) Diffusion weighted imaging in the detection of upper urinary tract urothelial tumors. Int Braz J Urol 36(1):18–28

    Article  PubMed  Google Scholar 

  10. El-Assmy A, Abou-El-Ghar ME, Refaie HF, et al. (2008) Diffusion-weighted MR imaging in diagnosis of superficial and invasive urinary bladder carcinoma: a preliminary prospective study. Sci World J 8:364–370

    Article  Google Scholar 

  11. Damasio MB, Tagliafico A, Capaccio E, et al. (2008) Diffusion-weighted MRI sequences (DW-MRI) of the kidney: normal findings, influence of hydration state and repeatability of results. Radiol Med 113(2):214–224

    Article  CAS  PubMed  Google Scholar 

  12. Matsuki M, Inada Y, Tatsugami F, et al. (2007) Diffusion-weighted MR imaging for urinary bladder carcinoma: initial results. Eur Radiol 17(1):201–204

    Article  PubMed  Google Scholar 

  13. Guo Y, Cai YQ, Cai ZL, et al. (2002) Differentiation of clinically benign and malignant breast lesions using diffusion-weighted imaging. J Magn Reson Imaging 16:172–178

    Article  PubMed  Google Scholar 

  14. Gauvain KM, McKinstry RC, Mukherjee P, et al. (2001) Evaluating pediatric brain tumor cellularity with diffusion-tensor imaging. AJR Am J Roentgenol 177:449–454

    Article  CAS  PubMed  Google Scholar 

  15. Sugahara T, Korogi Y, Kochi M, et al. (1999) Usefulness of diffusion-weighted MRI with echo-planar technique in the evaluation of cellularity in gliomas. J Magn Reson Imaging 9:53–60

    Article  CAS  PubMed  Google Scholar 

  16. Lang P, Wendland MF, Saeed M, et al. (1998) Osteogenic sarcoma: noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging. Radiology 206:227–235

    CAS  PubMed  Google Scholar 

  17. Nasu K, Kuroki Y, Nawano S, et al. (2006) Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 239:122–130

    Article  PubMed  Google Scholar 

  18. Provenzale JM, Mukundan S, Barboriak DP (2006) Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239:632–649

    Article  PubMed  Google Scholar 

  19. Chan JH, Tsui EY, Luk SH, et al. (2001) Diffusion weighted MR imaging of the liver: distinguishing hepatic abscess from cystic or necrotic tumor. Abdom Imaging 26:161–165

    Article  CAS  PubMed  Google Scholar 

  20. Cova M, Squillaci E, Stacul F, et al. (2004) Diffusion weighted MRI in the evaluation of renal lesions: preliminary results. Br J Radiol 77:851–857

    Article  CAS  PubMed  Google Scholar 

  21. Chen CY, Li CW, Kuo YT, et al. (2006) Early response of hepatocellular carcinoma to transcatheter arterial chemoembolization: choline levels and MR diffusion constants-initial experience. Radiology 239:448–456

    Article  PubMed  Google Scholar 

  22. Jacobs MA, Herskovits EH, Kim HS (2005) Uterine fibroids: diffusion-weighted MR imaging for monitoring therapy with focused ultrasound surgery *preliminary study. Radiology 236:196–203

    Article  PubMed  Google Scholar 

  23. Scoutt LM, Flynn SD, Luthringer DJ, et al. (1991) Junctional zone of the uterus: correlation of MR imaging and histologic examination of hysterectomy specimens. Radiology 179(2):403–407

    CAS  PubMed  Google Scholar 

  24. McCarthy S, Scott G, Majumdar S, et al. (1989) Uterine junctional zone: MR study of water content and relaxation properties. Radiology 171(1):241–243

    CAS  PubMed  Google Scholar 

  25. Brown HK, Stoll BS, Nicosia SV, et al. (1991) Uterine junctional zone: correlation between histologic findings and MR imaging. Radiology 179(2):409–413

    CAS  PubMed  Google Scholar 

  26. Farrer-Brown G, Beilby JO, Tarbit MH (1970) The blood supply of the uterus. 1. Arterial vasculature. J Obstet Gynaecol Br Commonw 77:673

    Article  CAS  PubMed  Google Scholar 

  27. Koyama T, Togashi K (2007) Functional MR imaging of the female pelvis. J Magn Reson Imaging 25:1101–1112

    Article  PubMed  Google Scholar 

  28. Ascher SM, Jha RC, Reinhold C (2003) Benign myometrial conditions: leiomyomas and adenomyosis. Top Magn Reson Imaging 14(4):281–304

    Article  PubMed  Google Scholar 

  29. Hever A, Roth RB, Hevezi PA, et al. (2006) Molecular characterization of human adenomyosis. Mol Hum Reprod 12(12):737–748

    Article  CAS  PubMed  Google Scholar 

  30. Kilickesmez O, Bayramoglu S, Inci E, et al. (2009) Quantitative diffusion-weighted magnetic resonance imaging of normal and diseased uterine zones. Acta Radiol 50(3):340–347

    Article  CAS  PubMed  Google Scholar 

  31. Liapi E, Kamel IR, Bluemke DA, et al. (2005) Assessment of response of uterine fibroids and myometrium to embolization using diffusion-weighted echoplanar MR imaging. J Comput Assist Tomogr 29(1):83–86

    Article  PubMed  Google Scholar 

  32. Erdem G, Celik O, Karakas HM, et al. (2009) Microstructural changes in uterine leiomyomas and myometrium: a diffusion-weighted magnetic resonance imaging study. Gynecol Obstet Investig 67(4):217–222 (Epub 2009)

    Article  Google Scholar 

  33. Taouli B, Vilgrain V, Dumont E, et al. (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78

    Article  PubMed  Google Scholar 

  34. Koh DM, Scurr E, Collins DJ, et al. (2006) Colorectal hepatic metastases: quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging. Eur Radiol 16:1898–1905

    Article  CAS  PubMed  Google Scholar 

  35. Hricak H, Tscholakoff D, Heinrichs L, et al. (1986) Uterine leiomyomas: correlation of MR, histopathologic findings, and symptoms. Radiology 158:385–391

    CAS  PubMed  Google Scholar 

Download references

Disclosure

The authors have nothing to disclose

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reena C. Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jha, R.C., Zanello, P.A., Ascher, S.M. et al. Diffusion-weighted imaging (DWI) of adenomyosis and fibroids of the uterus. Abdom Imaging 39, 562–569 (2014). https://doi.org/10.1007/s00261-014-0095-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0095-z

Keywords

Navigation