Skip to main content

Advertisement

Log in

New acquisition techniques: fields of application

  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Conventional MR imaging of the liver has a central role in the assessment of liver diseases. Diffusion-weighted MR imaging, MR elastography, and time-resolved dynamic contrast-enhanced MR imaging improve the anatomical information provided by conventional MR imaging and add quantitative functional information in diffuse and focal liver diseases. Particularly, accurate detection and characterization of liver fibrosis are feasible with quantitative MR elastography, detection of liver tumors is increased with diffusion-weighted MR imaging and time-resolved dynamic contrast-enhanced MR imaging, characterization of tumors can be improved with quantitative diffusion-weighted MR imaging and MR elastography. These methods also have the potential to provide adequate biomarkers for assessing the response to treatment. Currently, the main limitations of quantitative MR imaging are related to reproducibility, standardization, and/or limited clinical data. It is important to improve and standardize the quantitative MR methods and validate their role in large multicenter trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Taouli B, Koh DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254:47–66

    Article  PubMed  Google Scholar 

  2. Lewin M, Poujol-Robert A, Boëlle PY, et al. (2007) Diffusion-weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. Hepatology 46:655–658

    Article  Google Scholar 

  3. Le Bihan D, Breton E, Lallemand D, et al. (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505

    PubMed  CAS  Google Scholar 

  4. Luciani A, Vignaud A, Cavet M, et al. (2008) Liver cirrhosis: intravoxel incoherent motion MR imaging. Radiology 249:891–899

    Article  PubMed  Google Scholar 

  5. Padhani A, Liu G, Koh DM, et al. (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    PubMed  CAS  Google Scholar 

  6. Ivancevic MK, Kwee TC, Takahara T, et al. (2009) Diffusion-weighted MR imaging of the liver at 3.0 Tesla using tracking only navigator echo (TRON): a feasibility study. J Magn Reson Imaging 30:1027–1033

    Article  PubMed  Google Scholar 

  7. Kwee TC, Takahara T, Koh DM, Nievelstein R, Luijten P (2008) Comparison and reproducibility of ADC measurements in breath-hold, respiratory triggered, and free-breathing diffusion-weighted MR imaging of the liver. J Magn Reson Imaging 28:1141–1148

    Article  PubMed  Google Scholar 

  8. Kim S, Lee S, Byun J, et al. (2010) Malignant hepatic tumors: short-term reproducibility of apparent diffusion coefficients with breath-hold and respiratory-triggered diffusion-weighted MR imaging. Radiology 255:815–823

    Article  PubMed  Google Scholar 

  9. Taouli B, Sandberg A, Stemmer A, et al. (2009) Diffusion-weighted imaging of the liver: comparison of navigator triggered and breath-hold acquisitions. J Magn Reson Imaging 30:561–568

    Article  PubMed  Google Scholar 

  10. Van den Bos I, Hussain S, Krestin G, Wielopolski P (2008) Liver imaging at 3.0 T: diffusion-induced black-blood echo-planar imaging with large anatomic volumetric coverage as an alternative for specific absorption rate-intensive echo-train spin-echo sequences: feasibility study. Radiology 248:264–270

    Article  PubMed  Google Scholar 

  11. Sheihmorteza M, Sirlin C, Wolfon T, et al. (2009) Effect of shot number on the calculated apparent diffusion coefficient in phantoms and in human liver in diffusion-weighted echo-planar imaging. J Magn Reson Imaging 30:547–553

    Article  Google Scholar 

  12. Kwee T, Takahara T, Niwa T, et al. (2009) Influence of cardiac motion on diffusion-weighted magnetic resonance imaging of the liver. Magn Reson Mater Phy 22:319–325

    Article  CAS  Google Scholar 

  13. Mürtz P, Flacke S, Träber F, et al. (2002) Abdomen: diffusion-weighted MR imaging with pulse-triggered single-shot sequences. Radiology 224:258–264

    Article  PubMed  Google Scholar 

  14. Doblas S, Wagner M, Daire JL, et al. (2011) Repeatability of perfusion and pure diffusion parameters in a bi-exponential, multi-b diffusion imaging approach. ISMRM, abstract 1061

  15. Taouli B, Chouli M, Martin AJ, et al. (2008) Chronic hepatitis: role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation. J Magn Reson Imaging 28:89–95

    Article  PubMed  Google Scholar 

  16. Annet L, Peeters F, Abarca-Quinones J, et al. (2007) Assessment of diffusion-weighted MR imaging in liver fibrosis. J Magn Reson Imaging 25:122–128

    Article  PubMed  Google Scholar 

  17. Coenegrachts K, De Geeter F, Ter Beek L, et al. (2009) Comparison of MRI (including SS SE-EPI and SPIO-enhanced MRI) and FDG-PET/CT for the detection of colorectal liver metastases. Eur Radiol 19:370–379

    Article  PubMed  Google Scholar 

  18. Hussain S, De Becker J, Hop W, Dwarkasing S, Wielopolski P (2005) Can a single-shot black-blood T2-weighted spin-echo echo-planar imaging sequence with sensitivity encoding replace the respiratory-triggered turbo spin-echo sequence for the liver? An optimization and feasibility study. J Magn Reson Imaging 21:219–229

    Article  PubMed  Google Scholar 

  19. Nasu K, Kuroki Y, Nawano S, et al. (2006) Hepatic metastases: diffusion-weighted sensitivity-encoding versus SPIO-enhanced MR imaging. Radiology 239:122–130

    Article  PubMed  Google Scholar 

  20. Goshima S, Kanematsu M, Kondo H, et al. (2008) Diffusion-weighted imaging of the liver: optimizing b value for the detection and characterization of benign and malignant hepatics lesions. J Magn Reson Imaging 28:691–697

    Article  PubMed  Google Scholar 

  21. Taouli B, Vilgrain V, Dumont E, et al. (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226:71–78

    Article  PubMed  Google Scholar 

  22. Parikh T, Drew SJ, Lee V, et al. (2008) Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 246:812–822

    Article  PubMed  Google Scholar 

  23. Bruegel M, Holzapfel K, Gaa J, et al. (2008) Characterization of focal liver lesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18:477–485

    Article  PubMed  Google Scholar 

  24. Annet L, Duprez T, Grandin C, et al. (2002) Apparent diffusion coefficient measurements within intracranial epidermoid cyst in six patients. Neuroradiology 44:326–328

    Article  PubMed  CAS  Google Scholar 

  25. Doblas S, Wagner M, Daire JL, et al. (2011) The added value of a bi-exponential approach for processing multi-b diffusion-weighted imaging data in the diagnosis of hepatic tumors. ISMRM, abstract 1062

  26. Moffat BA, Chenevert TL, Laurence TS, et al. (2005) Functional diffusion map: a non-invasive MRI biomarker for early stratification of clinical brain tumor response. Proc Natl Acad Sci USA 102:5524–5529

    Article  PubMed  CAS  Google Scholar 

  27. Moffat BA, Hall DE, Stojanovska J, et al. (2004) Diffusion imaging for evaluation of tumor therapies in preclinical animal models. Magn Reson Mater Phy 17:249–259

    Article  CAS  Google Scholar 

  28. Lewin M, Fartoux L, Vignaud A, et al. (2011) The diffusion-weighted imaging perfusion fraction f is a potential marker of sorafenib treatment in advanced hepatocellular carcinoma: a pilot study. Eur Radiol 21:281–290

    Article  PubMed  Google Scholar 

  29. Wagner M, Doblas S, Daire JL, et al. (2001) Diffusion-weighted MRI for the zonal characterization of livers tumors. ISMRM, abstract 2987

  30. Llovet JM, Di Bisceglie AM, Bruix J, et al. (2008) Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 100:698–711

    Article  PubMed  Google Scholar 

  31. Rubbia-Brandt L, Gisotra E, Brezault C, et al. (2007) Importance of histological tumor response assessment in predicting the outcome in patients with colorectal liver metastases treated with neo-adjuvant chemotherapy followed by liver surgery. Ann Oncol 18:299–304

    Article  PubMed  CAS  Google Scholar 

  32. Blazer D, Kishi Y, Maru D, et al. (2008) Pathologic response to preoperative chemotherapy: a new outcome end point after resection of hepatic colorectal metastases. J Clin Oncol 25:5344–5351

    Article  Google Scholar 

  33. Chun Y, Vauthey JN, Boonsirikamchai P, et al. (2009) Association of computed tomography morphologic criteria with pathologic response and survival in patients treated with bevacizumab for colorectal liver metastases. JAMA 302:2338–2344

    Article  PubMed  CAS  Google Scholar 

  34. Muthupillai R, Lomas D, Rossman J, et al. (1995) Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269:1854–1857

    Article  PubMed  CAS  Google Scholar 

  35. Sinkus R, Tanter M, Xydeas T, et al. (2005) Viscoelastic shear properties of in vivo breast lesions measured by MR elastography. Magn Reson Imaging 23:159–165

    Article  PubMed  Google Scholar 

  36. Huwart L, Sempoux C, Vicaut E, et al. (2008) Magnetic resonance elastography for the non-invasive staging of liver fibrosis. Gastroenterology 135:299–302

    Article  Google Scholar 

  37. Huwart L, Peeters F, Sinkus R, et al. (2006) Liver fibrosis: non-invasive assessment with MR elastography. NMR Biomed 19:173–179

    Article  PubMed  Google Scholar 

  38. Huwart L, Sempoux C, Salameh N, et al. (2007) Liver fibrosis: non-invasive assessment with MR elastography versus aspartate aminotransferase-to-platelet ration index. Radiology 245:458–466

    Article  PubMed  Google Scholar 

  39. Yin M, Talwalkar JA, Glaser KJ, et al. (2007) Assessment of hepatic fibrosis with magnetic resonance elastography. Clin Gastrorenterol Hepatol 5:1207–1213

    Article  Google Scholar 

  40. Asbach P, Klatt D, Schlosser B, et al. (2010) Viscoelasticity-based staging of hepatic fibrosis with multifrequency MR elastography. Radiology 257:80–86

    Article  PubMed  Google Scholar 

  41. Salameh N, Peeters F, Sinkus R, et al. (2007) Hepatic viscoelastic parameters measured with MR elastography: correlations with quantitative analysis of liver fibrosis in the rat. J Magn Reson Imaging 26:956–962

    Article  PubMed  Google Scholar 

  42. Garcia-Tsao G, Friedman S, Iredale J, Pinzani M (2010) Now there are many (stages) where before there was one: in search of a pathophysiological classification of cirrhosis. Hepatology 51:1–5

    Article  Google Scholar 

  43. Castera L, Pinzani M (2010) Biopsy and non-invasive methods for the diagnosis of liver fibrosis: does it take two to tango? Gut 59:861–866

    Article  PubMed  Google Scholar 

  44. Coco B, Oliveri F, Maina AM, et al. (2007) Transient elastography: a new surrogate marker of liver fibrosis influenced by major changes of transaminases. J Viral Hepat 14:360–369

    Article  PubMed  CAS  Google Scholar 

  45. Salameh N, Larrat B, Abarca-Quinones J, et al. (2009) Early detection of steatohepatitis in fatty rat liver by using MR elastography. Radiology 253:90–97

    Article  PubMed  Google Scholar 

  46. Venkatesh SK, Yin M, Glockner JF, et al. (2008) MR elastography of liver tumors: preliminary results. AJR Am J Roentgenol 190:1534–1540

    Article  PubMed  Google Scholar 

  47. Doblas S, Garteiser P, Haddad N, et al. (2011) Magnetic resonance elastography measurements of viscosity: a novel biomarker for human hepatic tumor malignancy? ISMRM, abstract 389

  48. Papazoglou S, Xu C, Hamhaber U, et al. (2009) Scatter-based magnetic resonance elastography. Phys Med Biol 7:2229–2241

    Article  Google Scholar 

  49. Sinkus R, Siegmann K, Xydeas T, et al. (2007) MR elastography of breast lesions: understanding the solid/liquid duality can improve the specificity of contrast-enhanced MR mammography. Magn Reson Med 58:1135–1144

    Article  PubMed  Google Scholar 

  50. Materne R, Hormans Y, Jamart J, et al. (2000) Gadolinium-enhanced arterial-phase MR imaging of hypervascular livers tumors: comparison between tailored and fixed scanning delays in the same patients. J Magn Reson Imaging 11:244–249

    Article  PubMed  CAS  Google Scholar 

  51. Beck G, De Becker J, Jones A, et al. (2008) Contrast-enhanced timing robust acquisition order with a preparation of the longitudinal signal component (CENTRA plus) for the 3D contrast-enhanced abdominal imaging. J Magn Reson Imaging 27:1461–1467

    Article  PubMed  Google Scholar 

  52. Walker-Samuel S, Leach M, Collins D (2006) Evaluation of response to treatment using DCE-MRI: the relationship between initial area under the gadolinium curve (IAUGC) and quantitative pharmacokinetic analysis. Phys Med Biol 51:3593–3602

    Article  PubMed  CAS  Google Scholar 

  53. Materne R, Smith AM, Dehoux JP, et al. (2002) Assessment of hepatic perfusion parameters with dynamic MRI. Magn Reson Med 47:135–142

    Article  PubMed  CAS  Google Scholar 

  54. Evelhoch J (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259

    Article  PubMed  CAS  Google Scholar 

  55. Hagiwara M, Rusinek H, Lee V, et al. (2008) Advanced liver fibrosis: diagnosis with 3D whole-liver perfusion MR imaging-initial experience. Radiology 246:926–934

    Article  PubMed  Google Scholar 

  56. Tofts P, Brix G, Buckley D, et al. (1999) Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusible tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  PubMed  CAS  Google Scholar 

  57. Liu Y, Matsui O (2007) Changes of intratumoral microvessels and blood perfusion during establishment of hepatic metastases in mice. Radiology 243:386–395

    Article  PubMed  Google Scholar 

  58. International Consensus Group for Hepatocellular Neoplasia (2009) Pathologic diagnosis of early of hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 49:658–664

    Article  Google Scholar 

  59. Buckley D (2002) Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhanced T1-weighted MRI. Magn Reson Med 47:601–606

    Article  PubMed  Google Scholar 

  60. Michoux N, Huwart L, Abarca-Quinones J, et al. (2008) Transvascular and interstitial transport in rat hepatocellular carcinomas: dynamic contrast-enhanced MRI assessment with low and high-molecular weight agents. J Magn Reson Imaging 28:906–914

    Article  PubMed  Google Scholar 

  61. Leach M, Brindle K, Evelhoch J, et al. (2005) The assessment of antiangiogenic and antivascular therapies in early-stage clinical trials using magnetic resonance imaging: issues and recommendations. Br J Cancer 92:1599–1610

    Article  PubMed  CAS  Google Scholar 

  62. Koh T, Thong C, Lee P, et al. (2008) Hepatic metastases: in vivo assessment of parameters at dynamic contrast-enhanced MR imaging with dual-input two-compartment kinetics model. Radiology 249:307–320

    Article  PubMed  Google Scholar 

  63. Galbraith S, Lodge M, Taylor J, et al. (2002) Reproducibility of dynamic contrast-enhanced MRI in human muscle and tumors: comparison of quantitative and semi-quantitative analysis. NMR Biomed 15:132–142

    Article  PubMed  Google Scholar 

  64. Padhani A, Hayes C, Landau S, Leach M (2002) Reproducibility of quantitative dynamic MRI of normal human tissues. NMR Biomed 15:143–153

    Article  PubMed  Google Scholar 

  65. Thabut D, Shah V (2010) Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J Hepatol 53:976–980

    Article  PubMed  Google Scholar 

  66. Annet L, Materne R, Danse E, et al. (2003) Hepatic flow parameters measured with MR imaging and Doppler US: correlations with degree of cirrhosis and portal hypertension. Radiology 229:409–414

    Article  PubMed  Google Scholar 

  67. Van Beers BE, Materne R, Annet L, et al. (2003) Capillarization of the sinusoids in liver fibrosis: noninvasive assessment with contrast-enhanced MRI in the rabbit. Magn Reson Med 49:692–699

    Article  PubMed  Google Scholar 

  68. Ronot M, Asselah T, Paradis V, et al. (2010) Liver fibrosis in chronic hepatitis C virus infection: differentiating minimal from intermediate fibrosis with perfusion CT. Radiology 256:135–142

    Article  PubMed  Google Scholar 

  69. Takahashi N, Yoshioka H, Yamaguchi M, Saida Y, Itai Y (2003) Accelerated dynamic MR imaging with a parallel imaging technique for hypervascular hepatocellular carcinomas: usefulness of a test bolus in examination and subtraction imaging. J Magn Reson Imaging 18:80–89

    Article  PubMed  Google Scholar 

  70. Cuenod C, Leconte I, Siauve N, et al. (2001) Early changes in liver perfusion caused by occult metastases in rats: detection with quantitative CT. Radiology 218:556–561

    PubMed  CAS  Google Scholar 

  71. White M, O’Gorman R, Charles-Edwards E, et al. (2007) Parametric mapping of the hepatic perfusion index with gadolinium-enhanced volumetric MRI. Br J Radiol 80:113–120

    Article  PubMed  CAS  Google Scholar 

  72. Zechman C, Woenne E, Brix G, et al. (2007) Impact of stroma on the growth, microcirculation, and metabolism of experimental prostate tumors. Neoplasia 9:57–59

    Article  Google Scholar 

  73. Hlatky L, Hahnfeldt P, Folkman J (2002) Clinical application of antiangiogenic therapy: microvessel density, what it does and doesn’t tell us. J Natl Cancer Inst 94:883–893

    Article  PubMed  Google Scholar 

  74. D’Assignies G, Couvelard A, Bahrami S, et al. (2009) Pancreatic endocrine tumors: tumor blood flow assessed with perfusion CT reflects angiogenesis and correlates with prognostic factors. Radiology 250:407–416

    Article  PubMed  Google Scholar 

  75. Baish J, Netti P, Jain R (1997) Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors. Microvasc Res 53:128–141

    Article  PubMed  CAS  Google Scholar 

  76. Lee L, Sharma S, Morgan B, et al. (2006) Biomarkers for assessment of pharmacologic activity for a vascular endothelial growth factor (VEGF) receptor inhibitor, PTK787/ZK 222584 (PTK/ZK): translation of biological activity in a mouse melanoma metastasis model to phase I studies in patients with advanced colorectal cancer with liver metastases. Cancer Chemother Pharmacol 57:761–771

    Article  PubMed  CAS  Google Scholar 

  77. Morgan B, Thomas A, Drevs J, et al. (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21:3955–3964

    Article  PubMed  CAS  Google Scholar 

  78. Tong R, Boucher Y, Kosin S, et al. (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736

    Article  PubMed  CAS  Google Scholar 

  79. Mc Donald D, Choyke P (2003) Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725

    Article  CAS  Google Scholar 

  80. Inai T, Mancuso M, Hashizume H (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165:35–52

    Article  PubMed  CAS  Google Scholar 

  81. Ansiaux R, Baudelet C, Jordan B, et al. (2005) Thalidomide radiosensitizes tumors through early changes in the tumor microenvironment. Clin Cancer Res 11:743–750

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard E. Van Beers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Beers, B.E., Doblas, S. & Sinkus, R. New acquisition techniques: fields of application. Abdom Imaging 37, 155–163 (2012). https://doi.org/10.1007/s00261-011-9748-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-011-9748-3

Keywords

Navigation