Skip to main content
Log in

Hepatocellular nodules in liver cirrhosis: MR evaluation

  • Invited Feature Section
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Liver cirrhosis is a major public health problem worldwide. Common causes of cirrhosis include hepatitis C virus, hepatitis B virus, alcohol consumption, and nonalcoholic steatohepatitis. Cirrhotic livers are characterized by advanced hepatic fibrosis and the development of hepatocellular nodules such as regenerative nodules, dysplastic or neoplastic nodules. Cirrhosis is the strongest predisposing factor for hepatocellular carcinoma (HCC). For example, viral hepatitis is the main risk factor for cirrhosis and is associated with the increased incidence (1%–4% per year) of HCC after development of cirrhosis. Currently, a variety of imaging modalities, including ultrasound (US), computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET) are used in noninvasive evaluation of patients with chronic liver disease and suspected HCC. With technological development of MR scanners, MR imaging has emerged as an important imaging modality for assessing cirrhosis and its complications such as HCC. The recent advance in MR is the introduction of faster sequences which have allowed high-quality imaging of the entire liver with high intrinsic soft-tissue contrast, and also multiphasic dynamic MRI that is essential for the detection and characterization of HCC. In addition, functional MRI including diffusion-weighted MRI, MR elastography, and new MR contrast agent with dual function have been investigated for the clinical utility of detection and characterization of HCCs. In this article, we provide an overview of the state-of-the-art MR imaging techniques being used for noninvasive assessment of hepatocellular nodules including conventional dynamic imaging, liver-specific contrast-enhanced MR imaging, diffusion-weighted imaging, MR spectroscopy, and MR elastography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P (2001) Estimating the world cancer burden: Globocan 2000. Int J Cancer 94:153–156

    Article  PubMed  CAS  Google Scholar 

  2. MacSween RNM, Burt A, Portmann B (2002) Pathology of the liver, 4th edn. Churchill Livingstone: London

    Google Scholar 

  3. El Serag HB, Mason AC (1999) Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 340:745–750

    Article  PubMed  CAS  Google Scholar 

  4. Hanna RF, Aguirre DA, Kased N, et al. (2008) Cirrhosis-associated hepatocellular nodules: correlation of histopathologic and MR imaging features. Radiographics 28:747–769

    Article  PubMed  Google Scholar 

  5. Choi BI (2004) The current status of imaging diagnosis of hepatocellular carcinoma. Liver Transplant 10:S20–S25

    Article  Google Scholar 

  6. Willatt JM, Hussain HK, Adusumilli S, Marrero JA (2008) MR imaging of hepatocellular carcinoma in the cirrhotic liver: challenges and controversies. Radiology 247:311–330

    Article  PubMed  Google Scholar 

  7. Coleman WB (2003) Mechanisms of human hepatocarcinogenesis. Curr Mol Med 3:573–588

    Article  PubMed  CAS  Google Scholar 

  8. Shah TU, Semelka RC, Pamuklar E, et al. (2006) The risk of hepatocellular carcinoma in cirrhotic patients with small liver nodules on MRI. Am J Gastroeneterol 101:533–540

    Article  Google Scholar 

  9. Bruix J, Sherman M (2005) Management of hepatocellular carcinoma. Practice Guidelines Committee, American Association for the Study of Liver Diseases. Hepatology 42:1208–1236

    Article  PubMed  Google Scholar 

  10. Zech CJ, Reiser MF, Herrmann KA (2009) Imaging of hepatocellular carcinoma by computed tomography and magnetic resonance imaging: state of the art. Dig Dis 27:114–124

    Article  PubMed  Google Scholar 

  11. Bartolozzi C, Battaglia V, Bozzi E (2009) HCC diagnosis with liver-specific MRI-close to histopathology. Dig Dis 27:125–130

    Article  PubMed  Google Scholar 

  12. Hayashi M, Matsui O, Ueda K, et al. (1999) Correlation between the blood supply and grade of malignancy of hepatocellular nodules associated with liver cirrhosis: evaluation by CT during intraarterial injection of contrast medium. AJR 172:969–976

    PubMed  CAS  Google Scholar 

  13. Choi BI, Lee JM (2010) Advancement in HCC imaging: diagnosis, staging and treatment efficacy assessments: imaging diagnosis and staging of hepatocellular carcinoma. J Hepatobiliary Pancreat Surg 4:369–373

    Article  Google Scholar 

  14. Lee DH, Kim SH, Lee JM, et al. (2009) Diagnostic performance of multidetector row computed tomography, superparamagnetic iron oxide-enhanced magnetic resonance imaging, and dual-contrast magnetic resonance imaging in predicting the appropriateness of a transplant recipient based on milan criteria: correlation with histopathological findings. Invest Radiol 44:311–321

    Article  PubMed  Google Scholar 

  15. Kim SH, Choi D, Kim SH, et al. (2005) Ferucarbotran-enhanced MRI versus triple-phase MDCT for the preoperative detection of hepatocellular carcinoma. AJR 184:1069–1076

    PubMed  Google Scholar 

  16. Kim YK, Kwak HS, Kim CS, et al. (2006) Hepatocellular carcinoma in patients with chronic liver disease: comparison of SPIO-enhanced MR imaging and 16-detecter row CT. Radiology 238:531–541

    Article  PubMed  Google Scholar 

  17. Choi SH, Lee JM, Yu NC, et al. (2008) Hepatocellular carcinoma in liver transplantation candidates: detection with gadobenate dimeglumine-enhanced MRI. AJR 191:529–536

    Article  PubMed  Google Scholar 

  18. Park HS, Lee JM, Kim SH, et al. (2009) Differentiation of well-differentiated hepatocellular carcinomas from other hepatocellular nodules in cirrhotic liver: value of SPIO-enhanced MR imaging at 3.0 Tesla. J Magn Reson Imaging 29:328–335

    Article  PubMed  Google Scholar 

  19. Sun HY, Lee JM, Shin CI, et al. (2010) Gadoxetic acid-enhanced magnetic resonance imaging for differentiating small hepatocellular carcinomas (< or = 2 cm in diameter) from arterial enhancing pseudolesions: special emphasis on hepatobiliary phase imaging. Invest Radiol 45(2):96–103

    Article  PubMed  CAS  Google Scholar 

  20. Motosugi U, Ichikawa T, Sou H, et al. (2010) Distinguishing hypervascular pseudolesions of the liver from hypervascular hepatocellular carcinomas with gadoxetic acid-enhanced MR imaging. Radiology 256(1):151–158

    Article  PubMed  Google Scholar 

  21. Ahn SS, Kim MJ, Lim JS, et al. (2010) Added value of gadoxetic acid-enhanced hepatobiliary phase MR imaging in the diagnosis of hepatocellular carcinoma. Radiology 255(2):459–466

    Article  PubMed  Google Scholar 

  22. Jung G, Breuer J, Poll LW, et al. (2006) Imaging characteristics of hepatocellular carcinoma using the hepatobiliary contrast agent Gd-EOB-DTPA. Acta Radiol 47:15–23

    Article  PubMed  CAS  Google Scholar 

  23. Bartolozzi C, Crocetti L, Lencioni R, et al. (2007) Biliary and reticuloendothelial impairment in hepatocarcinogenesis: the diagnostic role of tissue-specific MR contrast media. Eur Radiol 17:2519–2530

    Article  PubMed  Google Scholar 

  24. Hammerstingl R, Huppertz A, Breuer J, et al. (2008) Diagnostic efficacy of gadoxetic acid (Primovist)-enhanced MRI and spiral CT for a therapeutic strategy: comparison with intraoperative and histopathologic findings in focal liver lesion. Eur Radiol 18:457–467

    Article  PubMed  Google Scholar 

  25. Kim SH, Kim SH, Lee J, et al. (2009) Gadoxetic acid-enhanced MRI versus triple-phase MDCT for the preoperative detection of hepatocellular carcinoma. AJR 192:1675–1681

    Article  PubMed  Google Scholar 

  26. Kim JI, Lee JM, Choi JY, et al. (2008) The value of gadobenate dimeglumine-enhanced delayed-phase MR imaging for characterization of hepatocellular nodules in the cirrhotic liver. Invest Radiol 43:202–210

    Article  PubMed  CAS  Google Scholar 

  27. Tsuboyama T, Onishi H, Kim T, et al. (2010) Hepatocellular carcinoma: hepatocyte-selective enhancement at gadoxetic acid-enhanced MR imaging—correlation with expression of sinusoidal and canalicular transporters and bile accumulation. Radiology 255(3):824–833

    Article  PubMed  Google Scholar 

  28. Narita M, Hatano E, Arizono S, et al. (2009) Expression of OATP1B3 determines uptake of Gd-EOB-DTPA in hepatocellular carcinoma. J Gastroenterol 44(7):793–798

    Article  PubMed  CAS  Google Scholar 

  29. Kele P, van der Jagt EJ (2010) Diffusion weighted imaging in the liver. World J Gastroenterol 16:1567–1576

    Article  PubMed  Google Scholar 

  30. Taouli B, Ehman RL, Reeder SB (2009) Advanced MRI methods for assessment of chronic liver disease. AJR 193:14–27

    Article  PubMed  Google Scholar 

  31. Bammer R (2003) Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184

    Article  PubMed  Google Scholar 

  32. Charles-Edwards EM, de Souza NM (2006) Diffusion-weighted magnetic resonance imaging and its application to cancer. Cancer Imaging 6:135–143

    Article  PubMed  Google Scholar 

  33. Vandecaveye V, De Keyzer F, Verslype C, et al. (2009) Diffuseion-weighted MRI provides additional value to conventional dynamic contrast-enhanced MRI for detection of hepatocellular carcinoma. Eur Radiol 19:2456–2466

    Article  PubMed  Google Scholar 

  34. Taouli B, Sandberg A, Stemmer A, et al. (2009) Diffusion-weighted imaging of the liver: comparison of navigator triggered and breathhold acquisitions. J Magn Reson Imaging 30:561–568

    Article  PubMed  Google Scholar 

  35. Bruegel M, Holzapfel K, Gaa J, et al. (2008) Characterization of focal live rlesions by ADC measurements using a respiratory triggered diffusion-weighted single-shot echo-planar MR imaging technique. Eur Radiol 18:477–485

    Article  PubMed  Google Scholar 

  36. Miller FH, Hammond N, Siddiqi AJ (2010) Utility of diffusion-weighted MRI in distinguishing benign and malignant hepatic lesions. J Magn Reson Imaging 32(1):138–147

    Article  PubMed  Google Scholar 

  37. Taouli B, Ko DM (2010) Diffusion-weighted MR imaging of the liver. Radiology 254:47–66

    Article  PubMed  Google Scholar 

  38. Venkatesh SK, Yin M, Glockner JF, et al. (2008) MR elastography of liver tumors: preliminary results. AJR 190:1534–1540

    Article  PubMed  Google Scholar 

  39. Mariappan YK, Glaser KJ, Ehman RL (2010) Magnetic resonance elastography: a review. Clin Anat 23:497–511

    Article  PubMed  Google Scholar 

  40. Faria SC, Ganesan K, Mwangi I, et al. (2009) MR imaging of liver fibrosis: current state of the art. Radiographics 29(6):1615–1635 (Review)

    Article  PubMed  Google Scholar 

  41. Yin M, Chen J, Glaser KJ, Talwalkar JA, Ehman RL (2009) Abdominal magnetic resonance elastography. Top Magn Reson Imaging 20(2):79–87

    Article  PubMed  Google Scholar 

  42. Sijens PE (2009) Parametric exploration of the liver by magnetic resonance methods. Eur Radiol 19(11):2594–2607

    Article  PubMed  Google Scholar 

  43. Soper R, Himmerlreich U, Painter D, et al. (2002) Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy. Pathology 34:417–422

    Article  PubMed  Google Scholar 

  44. Irwan R, Edens MA, Sijens PE (2008) Assessment of the variations in fat content in normal liver using a fast quantification MR imaging method in comparison with results obtained by spectroscopic imaging. Eur Radiol 18:806–813

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Min Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J.M., Choi, B.I. Hepatocellular nodules in liver cirrhosis: MR evaluation. Abdom Imaging 36, 282–289 (2011). https://doi.org/10.1007/s00261-011-9692-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-011-9692-2

Keywords

Navigation