Skip to main content

Advertisement

Log in

Functional renal imaging: nonvascular renal disease

  • UPDATE
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

Functional renal imaging—a fast-growing field of MR-imaging—applies different sequence types to gather information about the kidneys other than morphology and angiography. This update article presents the current status of different functional imaging approaches and presents current and potential clinical applications. Apart from conventional in-phase and opposed-phase imaging, which already yields information about the tiusse composition, BOLD (blood-oxygenation level dependent) sequences, DWI (diffusion-weighted imaging) sequences, perfusion measurements, and dedicated contrast agents are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Outwater EK, Blasbalg R, Siegelman ES, Vala M. Detection of lipid in abdominal tissues with opposed-phase gradient-echo images at 1.5 T: techniques and diagnostic importance. Radiographics 1998;18:1465–1480

    PubMed  CAS  Google Scholar 

  2. Haustein J, Niendorf HP, Krestin G, Louton T, et al. Renal tolerance of gadolinium-DTPA/dimeglumine in patients with chronic renal failure. Invest Radiol 1992;27:153–156

    Article  PubMed  CAS  Google Scholar 

  3. Schoenberg SO, Bock M, Aumann S, Just A, et al. Quantitative recording of renal function with magnetic resonance tomography. Radiologe 2000;140:925–937

    Article  Google Scholar 

  4. Chu WC, Lam WW, Chan KW, et al. Dynamic gadolinium-enhanced magnetic resonance urography for assessing drainage in dilated pelvicalyceal systems with moderate renal function: preliminary results and comparison with diuresis renography. BJU Int 2004;93:830–834

    Article  PubMed  CAS  Google Scholar 

  5. Schurbert RA, Gockeritz S, Mentzel HJ, et al. Imaging in ureteral complications of renal transplantation: value of static fluid MR urography. Eur Radiol 2000;10:1152–1157

    Article  Google Scholar 

  6. Li W, Chavez D, Edelman RR, Prasad PV. Magnetic resonance urography by breath-hold contrast-enhanced three-dimensional FISP. J Magn Reson Imaging 1997;7:309–311

    Article  PubMed  CAS  Google Scholar 

  7. Nolte-Ernsting CC, Staatz G, Tacke J, Gunther RV. MR urography today. Abdom Imaging 2003;28:191–209

    Article  PubMed  CAS  Google Scholar 

  8. Kawashima A, Glockner JF, King BF Jr. CT urography and MR urography. Radiol Clin North Am 2003;41:945–961

    Article  PubMed  Google Scholar 

  9. Sommer FG, Jeffrey RB Jr, Rubin GD, et al. Detection of ureteral calculi in patients with suspected renal colic: value of reformatted noncontrast helical CT. AJR 1995;165:509–513

    PubMed  CAS  Google Scholar 

  10. Rohrschneider WK, Haufe S, Wiesel M, et al. Functional and morphologic evaluation of congenital urinary tract dilatation by using combined static-dynamic MR urography: findings in kidneys with a single collecting system. Radiology 2002;224:683–694

    Article  PubMed  Google Scholar 

  11. Semelka RC, Corrigan K, Ascher SM, et al. Renal corticomedullary differentiation: observation in patients with differing serum creatinine levels. Radiology 1994;190:149–152

    PubMed  CAS  Google Scholar 

  12. Weissleder R, Elizondo G, Wittenberg J, et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990;175:489–493

    PubMed  CAS  Google Scholar 

  13. Trillaud H, Degreze P, Combe C, et al. USPIO-enhanced MR imaging of glycerol-induced acute renal failure in the rabbit. Magn Reson Imaging 1995;13:233–240

    Article  PubMed  CAS  Google Scholar 

  14. Jo SK, Hu X, Kobayashi H, et al. Detection of inflammation following renal ischemia by magnetic resonance imaging. Kidney Int 2003;64:43–51

    Article  PubMed  Google Scholar 

  15. Hauger O, Delalande C, Trillaud H, et al. MR imaging of intrarenal macrophage infiltration in an experimental model of nephrotic syndrome. Magn Reson Med 1999;41:156–162

    Article  PubMed  CAS  Google Scholar 

  16. Hauger O, Delalande C, Deminiere C, et al. Nephrotoxic nephritis and obstructive nephropathy: evaluation with MR imaging enhanced with ultrasmall superparamagnetic iron oxide-preliminary findings in a rat model. Radiology 2000;217:819–826

    PubMed  CAS  Google Scholar 

  17. Ye Q, Yang D, Williams M, et al. In vivo detection of acute rat renal allograft rejection by MRI with USPIO particles. Kidney Int 2002;61:1124–1135

    Article  PubMed  Google Scholar 

  18. Roubidoux MA. MR of the kidneys, liver, and spleen in paroxysmal nocturnal hemoglobinuria. Abdom Imaging 1994;19:168–173

    Article  PubMed  CAS  Google Scholar 

  19. Prasad PV, Priatna A. Functional imaging of the kidneys with fast MRI techniques. Eur J Radiol 1999;29:133–148

    Article  PubMed  CAS  Google Scholar 

  20. Prasad PV, Edelman RR, Epstein FH. Noninvasive evaluation of intrarenal oxygenation with BOLD MRI. Circulation 1996;94:3271–3275

    PubMed  CAS  Google Scholar 

  21. Prasad PV, Epstein FH. Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition. Kidney Int 1999;55:294–298

    Article  PubMed  CAS  Google Scholar 

  22. Epstein FH, Veves A, Prasad P. Effect of diabetes on renal medullary oxygenation during water diuresis. Diabetes Care 2002;25:575–578

    Article  PubMed  Google Scholar 

  23. Li LP, Vu AT, Li BS, et al. Evaluation of intrarenal oxygenation by BOLD MRI at 3.0 T. J Magn Reson Imaging 2004;20:901–904

    Article  PubMed  Google Scholar 

  24. Ogawa S, Tank DW, Menon R, et al. Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 1992;89:5951–5955

    Article  PubMed  CAS  Google Scholar 

  25. Fisel CR, Ackerman JL, Buxton RB, et al. MR contrast due to microscopically heterogeneous magnetic susceptibility: numerical simulations and applications to cerebral physiology. Magn Reson Med 1991;17:336–347

    Article  PubMed  CAS  Google Scholar 

  26. Brezis M, Rosen S. Hypoxia of the renal medulla—its implications for disease. N Engl J Med 1995;332:647–655

    Article  PubMed  CAS  Google Scholar 

  27. Pedersen M, Dissing TH, Morkenborg J, et al. Validation of quantitative BOLD MRI measurements in kidney: Application to unilateral ureteral obstruction. Kidney lnt 2005;67:2305–2312

    Article  Google Scholar 

  28. Juillard L, Lerman LO, Kruger DG, et al. Blood oxygen level-dependent measurement of acute intra-renal ischemia. Kidney Int 2004;65:944–950

    Article  PubMed  Google Scholar 

  29. Ries M, Basseau F, Tyndal B, et al. Renal diffusion and BOLD MRI in experimental diabetic nephropathy. Blood oxygen level-dependent. J Magn Reson Imaging 2003;17:104–113

    Article  PubMed  Google Scholar 

  30. Epstein FH, Prasad P. Effects of furosemide on medullary oxygenation in younger and older subjects. Kidney Int 2000;57:2080–2083

    Article  PubMed  CAS  Google Scholar 

  31. Prasad PV, Priatna A, Spokes K, Epstein FH. Changes in intrarenal oxygenation as evaluated by BOLD MRI in a rat kidney model for radiocontrast nephropathy. J Magn Reson Imaging 2001;13:744–747

    Article  PubMed  CAS  Google Scholar 

  32. Li L, Storey P, Kim D, et al. Kidneys in hypertensive rats show reduced response to nitric oxide synthase inhibition as evaluated by BOLD MRI. J Magn Reson Imaging 2003;l7:671–675

    Article  Google Scholar 

  33. Li LP, Storey P, Pierchala L, et al. Evaluation of the reproducibility of intrarenal R2* and DeltaR2* measurements following administration of furosemide and during waterload. J Magn Reson Imaging 2004;19:610–616

    Article  PubMed  Google Scholar 

  34. Muller MF, Prasad P, Siewert B, et al. Abdominal diffusion mapping with use of a whole-body echo-planar system. Radiology 1994;190:475–478

    PubMed  CAS  Google Scholar 

  35. Muller MF, Prasad PV, Bimmler D, et al. Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology 1994;193:711–715

    PubMed  CAS  Google Scholar 

  36. Pedersen M, Wen JG, Shi Y, et al. (2003) The effect of unilateral ureteral obstruction on renal function in pigs measured by diffusion-weighted MRI. APMIS Suppl 29–34

  37. Vexler VS, Roberts TP, Rosenau W. Early detection of acute tubular injury with diffusion-weighted magnetic resonance imaging in a rat model of myohemoglobinuric acute renal failure. Ren Fail 1996;18:41–57

    PubMed  CAS  Google Scholar 

  38. Squillaci E, Manenti G, Cova M, et al. Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res 2004;24:4175–4179

    PubMed  Google Scholar 

  39. Squillaci E, Manenti G, Di Stefano F, et al. Diffusion-weighted MR imaging in the evaluation of renal tumours. J Exp Clin Cancer Res 2004;23:39–45

    PubMed  CAS  Google Scholar 

  40. Chan JH, Tsui EY, Luk SH, et al. MR diffusion-weighted imaging of kidney: differentiation between hydronephrosis and pyonephrosis. Clin Imaging 2001;25:110–113

    Article  PubMed  CAS  Google Scholar 

  41. Cova M, Squillaci E, Stacul F, et al. Diffusion-weighted MRI in the evaluation of renal lesions: preliminary results. BN J Radiol 2004;77:851–857

    Article  PubMed  CAS  Google Scholar 

  42. Yang D, Ye Q, Williams DS, et al. Normal and transplanted rat kidneys: diffusion MR imaging at 7 T. Radiology 2004;231:702–709

    Article  PubMed  Google Scholar 

  43. Aumann S, Schoenberg SO, Just A, et al. Quantification of renal perfusion using an intravascular contrast agent (part 1): results in a canine model. Magn Reson Med 2003;49:276–287

    Article  PubMed  Google Scholar 

  44. Berr SS, Hagspiel KD, Mai VM, et al. Perfusion of the kidney using extraslice spin tagging (EST) magnetic resonance imaging. J Magn Reson Imaging 1999;10:886–891

    Article  PubMed  CAS  Google Scholar 

  45. Bjornerud A, Johansson LO, Ahlstrom HK. Renal T(*)(2) perfusion using an iron oxide nanoparticle contrast agent—influence of T(1) relaxation on the first-pass response. Magn Reson Med 2002;77:298–304

    Article  Google Scholar 

  46. Gandy SJ, Sudarshan TA, Sheppard DG, et al. Dynamic MRI contrast enhancement of renal cortex: a functional assessment of renovascular disease in patients with renal artery stenosis. J Magn Reson Imaging 2003;18:461–466

    Article  PubMed  Google Scholar 

  47. Ichikawa T, Haradome H, Hachiya J, et al. Perfusion-weighted MR imaging in the upper abdomen: preliminary clinical experience in 61 patients. AJR 1997;l69:1061–1066

    Google Scholar 

  48. Karger N, Biederer J, Lusse S, et al. Quantitation of renal perfusion using arterial spin labeling with FAIR-UFLARE. Magn Reson Imaging 2000;18:641–647

    Article  PubMed  CAS  Google Scholar 

  49. Laissy JP, Faraggi M, Lebtahi R, et al. Functional evaluation of normal and ischemic kidney by means of gadolinium-DOTA enhanced TurboFLASH MR imaging: a preliminary comparison with 99Tc-MAG3 dynamic scintigraphy. Magn Resonjn-imaging 1994;12:413–419

    Article  CAS  Google Scholar 

  50. Michaely HJ, Schoenberg SO, Ittrich C, et al. Renal disease: value of functional magnetic resonance imaging with flow and perfusion measurements. Invest Radiol 2004;39:698–705

    Article  PubMed  Google Scholar 

  51. Prasad PV, Cannillo J, Chavez DR, et al. First-pass renal perfusion imaging using MS-325, an albumin-targeted MRI contrast agent. Invest Radiol 1999;34:566–571

    Article  PubMed  CAS  Google Scholar 

  52. Roberts DA, Detre JA, Bolinger L, et al. Renal perfusion in humans: MR imaging with spin tagging of arterial water. Radiology 1995;196:281–286

    PubMed  CAS  Google Scholar 

  53. Schoenberg SO, Aumann S, Just A, et al. Quantification of renal perfusion abnormalities using an intravascular contrast agent (part 2); results in animals and humans with renal artery stenosis. Magn Reson Med 2003;49:288–298

    Article  PubMed  Google Scholar 

  54. Trillaud H, Grenier N, Degreze P, et al. First-pass evaluation of renal perfusion with TurboFLASH MR imaging and superparamagnetic iron oxide particles. J Magn Reson Imaging 1993;3:83–91

    Article  PubMed  CAS  Google Scholar 

  55. Vallee JP, Lazeyras F, Khan HG, Terrier F. Absolute renal blood flow quantification by dynamic MRI and Gd-DTPA. Eur Radiol 2000;10:1245–1252

    Article  PubMed  CAS  Google Scholar 

  56. Williams DS, Zhang W, Koretsky AP, Adler S. Perfusion imaging of the rat kidney with MR. Radiology 1994;190:813–818

    PubMed  CAS  Google Scholar 

  57. Michaely HJ, Schoenberg SO, Oesingmann N, et al. (2006) Functional assessment of renal artery stenosis using dynamic MR perfusion measurements — feasibility. Radiology 238

  58. Lee VS, Rusinek H, Johnson G, et al. MR renography with low-dose gadopentetate dimeglumine: feasibility. Radiology 2001;221:371–379

    Article  PubMed  CAS  Google Scholar 

  59. Lee VS, Rusinek H, Noz ME, et al. Dynamic three-dimensional MR renography for the measurement of single kidney function: initial experience. Radiology 2003;227:289–294

    Article  PubMed  Google Scholar 

  60. Wang JJ, Hendrich KS, Jackson EK, et al. Perfusion quantitation in transplanted rat kidney by MRI with arterial spin labeling. Kidney Int 1998;53:1783–1791

    Article  PubMed  CAS  Google Scholar 

  61. Gunther M, Bock M, Schad LR. Arterial spin labeling in combination with a look-locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 2001;46:974–984

    Article  PubMed  CAS  Google Scholar 

  62. Prasad PV, Kim D, Kaiser AM, et al. Noninvasive comprehensive characterization of renal artery stenosis by combination of STAR angiography and EPISTAR perfusion imaging. Magn Reson Med 1997;38:776–787

    Article  PubMed  CAS  Google Scholar 

  63. Martirosian P, Klose U, Mader I, Schick F. FAIR true-FISP perfusion imaging of the kidneys. Magn Reson Med 2004;51:353–361

    Article  PubMed  Google Scholar 

  64. Thulborn KR. Clinical rationale for very-high-field (3.0 Tesla) functional magnetic resonance imaging. Top Magn Reson Imaging 1999;10:37–50

    PubMed  CAS  Google Scholar 

  65. Dally PF, Zimmerman JB, Gillen JS, Wolf GL. Rapid MR imaging of renal perfusion: a comparative study of GdDTPA, albumin-(GdDTPA), and magnetite. Am J Physiol Imaging 1989;4:165–174

    Google Scholar 

  66. Dujardin M, Sourbron S, van Schuerbeek P, et al. Deconvolution-based MR imaging of renal perfusion and function using dynamic T1 contrast: a feasibility study. In: Proceedings of the International Society for Magnetic Resonance in Medicine, The International Society for Magnetic Resonance in Medicine, Berkeley, 2004

  67. Johansson LO, Schoenberg SO, Ahlstrom H, Bjornerud A. Comparison of different deconvolution techniques for quantification of renal blood flow using an intravascular contrast agent. In: Proceedings of the lnternational Society for Magnetic Resonance in Medicine, The International Society for Magnetic Resonance in Medicine, Berkeley, 2003

  68. Hawighorst H, Knapstein PG, Weikel W, et al. Cervical carcinoma: comparison of standard and pharmacokinetic MR imaging. Radiology 1996;201:531–539

    PubMed  CAS  Google Scholar 

  69. Lenhard SC, Nerurkar SS, Schaeffer TR, et al. (2003) p38 MAPK inhibitors ameliorate target organ damage in hypertension. Part 2: Improved renal function as assessed by dynamic contrast-enhanced magnetic resonance imaging. J Pharmacol Exp Ther, 307:936–946

    Article  CAS  Google Scholar 

  70. Choyke PL, Austin HA, Frank JA, et al. Hydrated clearance of gadolinium-DTPA as a measurement of glomerular filtration rate. Kidney Int 1992;41:1595–1598

    PubMed  CAS  Google Scholar 

  71. Niendorf ER, Grist TM, Frayne R, et al. Rapid measurement of Gd-DTPA extraction fraction in a dialysis system using echo-planar imaging. Med Phys 1997;24:1907–1913

    Article  PubMed  CAS  Google Scholar 

  72. Niendorf ER, Grist TM, Lee FT Jr, et al. Rapid in vivo measurement of single-kidney extraction fraction and glomerular filtration rate with MR imaging. Radiology 1998;206:791–798

    PubMed  CAS  Google Scholar 

  73. Ros PR, Gauger J, Stoupis C, et al. Diagnosis of renal artery stenosis: feasibility of combining MR angiography, MR renography, and gadopentetate-based measurements of glomerular filtration rate. AJR 1995;165:1447–1451

    PubMed  CAS  Google Scholar 

  74. Huang AJ, Lee VS, Rusinek H. Functional renal MR imaging. Magn Reson Imaging Clin North Am 2004;12:469–486

    Article  Google Scholar 

  75. Baumann D, Rudin M. Quantitative assessment of rat kidney function by measuring the clearance of the contrast agent Gd(DOTA) using dynamic MRI. Magn Reson Imaging 2000;18:587–595

    Article  PubMed  CAS  Google Scholar 

  76. Laurent D, Poirier K, Wasvary J, Rudin M. Effect of essential hypertension on kidney function as measured in rat by dynamic MRI. Magn Reson Med 2002;47:127–134

    Article  PubMed  Google Scholar 

  77. Gates GF. Split renal function testing using Tc-99m DTPA. A rapid technique for determining differential glomerular filtration. Clin Nucl Med 1983;8:400–407

    Article  PubMed  CAS  Google Scholar 

  78. De Bazelaire C, Rofsky NM, Duhamel G, et al. Arterial spin labeling blood flow magnetic resonance imaging for the characterization of metastatic renal cell carcinoma(1). Acad Radiol 2005;12:347–357

    Article  PubMed  Google Scholar 

  79. Grenier N, Basseau F, Ries M, et al. Functional MRI of the kidney. Abdom Imaging 2003;28:164–175

    Article  PubMed  CAS  Google Scholar 

  80. Schoenberg SO, Bock M, Just A. [Experimental flow and perfusion measurements in the animal model with magnetic resonance tomography]. Radiologe 2001;41:146–153

    Article  PubMed  CAS  Google Scholar 

  81. Thoeny HC, De Keyzer F, Oyen RH, Peeters RR. Diffusion-weighted MR imaging of kidneys in healthy volunteers and patients with parenchymal diseases: initial experience. Radiology 2005;235:911–917

    Article  PubMed  Google Scholar 

  82. Chow LC, Bammer R, Moseley ME, Sommer FG. Single breath-hold diffusion-weighted imaging of the abdomen. J Magn Reson Imaging 2003;18:377–382

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Michaely.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaely, H.J., Herrmann, K.A., Nael, K. et al. Functional renal imaging: nonvascular renal disease. Abdom Imaging 32, 1–16 (2007). https://doi.org/10.1007/s00261-005-8004-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-005-8004-0

Keywords

Navigation