Skip to main content
Log in

Coronary sodium [18F]fluoride activity predicts outcomes post-CABG: a comparative evaluation with conventional metrics

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The value of preoperative multidisciplinary approach remains inadequately delineated in forecasting postoperative outcomes of patients undergoing coronary artery bypass grafting (CABG). Herein, we aimed to ascertain the efficacy of multi-modality cardiac imaging in predicting post-CABG cardiovascular outcomes.

Methods

Patients with triple coronary artery disease underwent cardiac sodium [18F]fluoride ([18F]NaF) positron emission tomography/computed tomography (PET/CT), coronary angiography, and CT-based coronary artery calcium scoring before CABG. The maximum coronary [18F]NaF activity (target-to-blood ratio [TBR]max) and the global coronary [18F]NaF activity (TBRglobal) was determined. The primary endpoint was perioperative myocardial infarction (PMI) within 7-day post-CABG. Secondary endpoint included major adverse cardiac and cerebrovascular events (MACCEs) and recurrent angina.

Results

This prospective observational study examined 101 patients for a median of 40 months (interquartile range: 19–47 months). Both TBRmax (odds ratio [OR] = 1.445; p = 0.011) and TBRglobal (OR = 1.797; P = 0.018) were significant predictors of PMI. TBRmax>3.0 (area under the curve [AUC], 0.65; sensitivity, 75.0%; specificity, 56.8%; p = 0.036) increased PMI risk by 3.661-fold, independent of external confounders. Kaplan–Meier test revealed a decrease in MACCE survival rate concomitant with an escalating TBRmax. TBRmax>3.6 (AUC, 0.70; sensitivity, 76.9%; specificity, 73.9%; p = 0.017) increased MACCEs risk by 5.520-fold. Both TBRmax (hazard ratio [HR], 1.298; p = 0.004) and TBRglobal (HR = 1.335; p = 0.011) were significantly correlated with recurrent angina. No significant associations were found between CAC and SYNTAX scores and between PMI occurrence and long-term MACCEs.

Conclusion

Quantification of coronary microcalcification activity via [18F]NaF PET displayed a strong ability to predict early and long-term post-CABG cardiovascular outcomes, thereby outperforming conventional metrics of coronary macrocalcification burden and stenosis severity.

Trial registration

: The trial was registered with the Chinese Clinical Trial Committee (number: ChiCTR1900022527; URL: www.chictr.org.cn/showproj.html?proj=37933).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Turco JV, Inal-Veith A, Fuster V. Cardiovascular Health Promotion: an issue that can no longer wait. J Am Coll Cardiol. 2018;72:908–13. https://doi.org/10.1016/j.jacc.2018.07.007.

    Article  PubMed  Google Scholar 

  2. Zhao D, Liu J, Wang M, Zhang X, Zhou M. Epidemiology of cardiovascular disease in China: current features and implications. Nat Rev Cardiol. 2019;16:203–12. https://doi.org/10.1038/s41569-018-0119-4.

    Article  PubMed  Google Scholar 

  3. Culler SD, Brown PP, Kugelmass AD, Cohen DJ, Reynolds MR, Katz MR, et al. Impact of complications on resource utilization during 90-Day coronary artery bypass graft bundle for Medicare Beneficiaries. Ann Thorac Surg. 2019;107:1364–71. https://doi.org/10.1016/j.athoracsur.2018.10.061.

    Article  PubMed  Google Scholar 

  4. Gatto L, Marco V, Contarini M, Prati F. Atherosclerosis to predict cardiac events: where and how to look for it. J Cardiovasc Med (Hagerstown). 2017;18(Suppl 1):e154–6. https://doi.org/10.2459/jcm.0000000000000465.

    Article  PubMed  Google Scholar 

  5. Laaksonen R, Ekroos K, Sysi-Aho M, Hilvo M, Vihervaara T, Kauhanen D, et al. Plasma ceramides predict cardiovascular death in patients with stable coronary artery disease and acute coronary syndromes beyond LDL-cholesterol. Eur Heart J. 2016;37:1967–76. https://doi.org/10.1093/eurheartj/ehw148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wallace EL, Morgan TM, Walsh TF, Dall’Armellina E, Ntim W, Hamilton CA, et al. Dobutamine cardiac magnetic resonance results predict cardiac prognosis in women with known or suspected ischemic heart disease. JACC Cardiovasc Imaging. 2009;2:299–307. https://doi.org/10.1016/j.jcmg.2008.10.015.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cho Y, Shimura S, Aki A, Furuya H, Okada K, Ueda T. The SYNTAX score is correlated with long-term outcomes of coronary artery bypass grafting for complex coronary artery lesions. Interact Cardiovasc Thorac Surg. 2016;23:125–32. https://doi.org/10.1093/icvts/ivw057.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Serruys PW, Onuma Y, Garg S, Sarno G, van den Brand M, Kappetein AP, et al. Assessment of the SYNTAX score in the Syntax study. EuroIntervention. 2009;5:50–6. https://doi.org/10.4244/eijv5i1a9.

    Article  PubMed  Google Scholar 

  9. Budoff MJ, Mayrhofer T, Ferencik M, Bittner D, Lee KL, Lu MT, et al. Prognostic value of coronary artery calcium in the PROMISE study (prospective Multicenter Imaging Study for evaluation of chest Pain). Circulation. 2017;136:1993–2005. https://doi.org/10.1161/circulationaha.117.030578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aikawa E, Nahrendorf M, Figueiredo JL, Swirski FK, Shtatland T, Kohler RH, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116:2841–50. https://doi.org/10.1161/circulationaha.107.732867.

    Article  CAS  PubMed  Google Scholar 

  11. Gulasova Z, Guerreiro SG, Link R, Soares R, Tomeckova V. Tackling endothelium remodeling in cardiovascular disease. J Cell Biochem. 2020;121:938–45. https://doi.org/10.1002/jcb.29379.

    Article  CAS  PubMed  Google Scholar 

  12. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, et al. F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;18:383:705–13. https://doi.org/10.1016/s0140-6736(13)61754-7.

    Article  Google Scholar 

  13. McKenney-Drake ML, Territo PR, Salavati A, Houshmand S, Persohn S, Liang Y, et al. F -NaF PET imaging of early coronary artery calcification. JACC Cardiovasc Imaging. 2016;18:9:627–8. https://doi.org/10.1016/j.jcmg.2015.02.026.

    Article  Google Scholar 

  14. Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F -sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48. https://doi.org/10.1016/j.jacc.2011.12.037.

    Article  CAS  PubMed  Google Scholar 

  15. Kitagawa T, Yamamoto H, Nakamoto Y, Sasaki K, Toshimitsu S, Tatsugami F, et al. Predictive value of 18F -Sodium Fluoride Positron Emission Tomography in Detecting High-Risk Coronary Artery Disease in Combination with computed tomography. J Am Heart Assoc. 2018;7:e010224. https://doi.org/10.1161/jaha.118.010224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wen W, Gao M, Yun M, Meng J, Yu W, Zhu Z, et al. In vivo coronary 18F -Sodium fluoride activity: correlations with coronary plaque histological vulnerability and physiological environment. JACC Cardiovasc Imaging. 2023;16:508–20. https://doi.org/10.1016/j.jcmg.2022.03.018.

    Article  PubMed  Google Scholar 

  17. Kwiecinski J, Tzolos E, Adamson PD, Cadet S, Moss AJ, Joshi N, et al. Coronary 18F -Sodium fluoride Uptake predicts outcomes in patients with coronary artery disease. J Am Coll Cardiol. 2020;75:3061–74. https://doi.org/10.1016/j.jacc.2020.04.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165. https://doi.org/10.1093/eurheartj/ehy394.

    Article  PubMed  Google Scholar 

  19. Kwiecinski J, Berman DS, Lee SE, Dey D, Cadet S, Lassen ML, et al. Three-hour delayed Imaging improves Assessment of Coronary 18F -Sodium fluoride PET. J Nucl Med. 2019;60:530–5. https://doi.org/10.2967/jnumed.118.217885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pawade TA, Cartlidge TR, Jenkins WS, Adamson PD, Robson P, Lucatelli C, et al. Optimization and reproducibility of aortic valve 18F -Fluoride Positron Emission Tomography in patients with aortic stenosis. Circ Cardiovasc Imaging. 2016;9:e005131. https://doi.org/10.1161/circimaging.116.005131.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth Universal Definition of Myocardial Infarction (2018). Circulation. 2018;138:e618–51. https://doi.org/10.1161/cir.0000000000000617.

  22. Moss A, Daghem M, Tzolos E, Meah MN, Wang KL, Bularga A, et al. Coronary atherosclerotic plaque activity and future coronary events. JAMA Cardiol. 2023;8:755–64. https://doi.org/10.1001/jamacardio.2023.1729.

  23. Thielmann M, Sharma V, Al-Attar N, Bulluck H, Bisleri G, Bunge JJH, et al. ESC Joint Working Groups on Cardiovascular surgery and the Cellular Biology of the heart position paper: Perioperative myocardial injury and infarction in patients undergoing coronary artery bypass graft surgery. Eur Heart J. 2017;38:2392–407. https://doi.org/10.1093/eurheartj/ehx383.

  24. Kwiecinski J, Tzolos E, Fletcher AJ, Nash J, Meah MN, Cadet S, et al. Bypass grafting and native coronary artery Disease Activity. JACC Cardiovasc Imaging. 2022;15:875–87. https://doi.org/10.1016/j.jcmg.2021.11.030.

  25. Podgoreanu MV, White WD, Morris RW, Mathew JP, Stafford-Smith M, Welsby IJ, et al. Inflammatory gene polymorphisms and risk of postoperative myocardial infarction after cardiac surgery. Circulation. 2006;114:I275–81. https://doi.org/10.1161/circulationaha.105.001032.

  26. Kraler S, Wenzl FA, Georgiopoulos G, Obeid S, Liberale L, von Eckardstein A, et al. Soluble lectin-like oxidized low-density lipoprotein receptor-1 predicts premature death in acute coronary syndromes. Eur Heart J. 2022;43:1849–60. https://doi.org/10.1093/eurheartj/ehac143.

  27. Jouan J, Golmard L, Benhamouda N, Durrleman N, Golmard JL, Ceccaldi R, et al. Gene polymorphisms and cytokine plasma levels as predictive factors of complications after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 2012;144. https://doi.org/10.1016/j.jtcvs.2011.12.022. :467 – 73, 473.e1-2.

  28. Held C, White HD, Stewart RAH, Budaj A, Cannon CP, Hochman JS, et al. Inflammatory biomarkers Interleukin-6 and C-Reactive protein and outcomes in stable Coronary Heart Disease: experiences from the STABILITY (stabilization of atherosclerotic plaque by Initiation of Darapladib Therapy) Trial. J Am Heart Assoc. 2017;6. https://doi.org/10.1161/jaha.116.005077.

  29. Gao M, Wen W, Gu C, Zhang X, Yu Y, Li H. Coronary plaque burden predicts perioperative cardiovascular events after coronary endarterectomy. Front Cardiovasc Med. 2023;10:1175287. https://doi.org/10.3389/fcvm.2023.1175287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ford TJ, Berry C, De Bruyne B, Yong ASC, Barlis P, Fearon WF, et al. Physiological predictors of Acute Coronary syndromes: emerging insights from the plaque to the vulnerable patient. JACC Cardiovasc Interv. 2017;10:2539–47. https://doi.org/10.1016/j.jcin.2017.08.059.

    Article  PubMed  Google Scholar 

  31. Ford TJ, Stanley B, Sidik N, Good R, Rocchiccioli P, McEntegart M, et al. 1-Year outcomes of Angina Management guided by invasive coronary function testing (CorMicA). JACC Cardiovasc Interv. 2020;13:33–45. https://doi.org/10.1016/j.jcin.2019.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Suda A, Takahashi J, Hao K, Kikuchi Y, Shindo T, Ikeda S, et al. Coronary functional abnormalities in patients with Angina and Nonobstructive Coronary Artery Disease. J Am Coll Cardiol. 2019;74:2350–60. https://doi.org/10.1016/j.jacc.2019.08.1056.

    Article  CAS  PubMed  Google Scholar 

  33. Ashwathanarayana AG, Singhal M, Satapathy S, Sood A, Mittal BR, Kumar RM et al. 18F -NaF PET uptake characteristics of coronary artery culprit lesions in a cohort of patients of acute coronary syndrome with ST-elevation myocardial infarction and chronic stable angina: A hybrid fluoride PET/CTCA study. J Nucl Cardiol. 202010.1007/s12350-020-02284-0.

  34. Chaudhary R, Chauhan A, Singhal M, Bagga S. Risk factor profiling and study of atherosclerotic coronary plaque burden and morphology with coronary computed tomography angiography in coronary artery disease among young indians. Int J Cardiol. 2017;240:452–7. https://doi.org/10.1016/j.ijcard.2017.04.090.

    Article  CAS  PubMed  Google Scholar 

  35. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11. https://doi.org/10.1161/01.cir.0000020548.60110.76.

    Article  CAS  PubMed  Google Scholar 

  36. ElFaramawy A, Youssef M, Abdel Ghany M, Shokry K. Difference in plaque characteristics of coronary culprit lesions in a cohort of Egyptian patients presented with acute coronary syndrome and stable coronary artery disease: an optical coherence tomography study. Egypt Heart J. 2018;70:95–100. https://doi.org/10.1016/j.ehj.2017.12.002.

    Article  PubMed  Google Scholar 

  37. Gin AL, Vergallo R, Minami Y, Ong DS, Hou J, Jia H, et al. Changes in coronary plaque morphology in patients with acute coronary syndrome versus stable angina pectoris after initiation of statin therapy. Coron Artery Dis. 2016;27:629–35. https://doi.org/10.1097/MCA.0000000000000415.

    Article  PubMed  Google Scholar 

  38. Ortega-Paz L, Garcia-Garcia HM, Brugaletta S. Could Plaque composition-related endothelial dysfunction Predict Poor Prognosis in Coronary Vasospastic Angina? J Am Coll Cardiol. 2016;67:1867. https://doi.org/10.1016/j.jacc.2015.12.070.

    Article  PubMed  Google Scholar 

  39. Gossl M, Yoon MH, Choi BJ, Rihal C, Tilford JM, Reriani M, et al. Accelerated coronary plaque progression and endothelial dysfunction: serial volumetric evaluation by IVUS. JACC Cardiovasc Imaging. 2014;7:103–4. https://doi.org/10.1016/j.jcmg.2013.05.020.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lo-Kioeng-Shioe MS, Rijlaarsdam-Hermsen D, van Domburg RT, Hadamitzky M, Lima JAC, Hoeks SE, et al. Prognostic value of coronary artery calcium score in symptomatic individuals: a meta-analysis of 34,000 subjects. Int J Cardiol. 2020;299:56–62. https://doi.org/10.1016/j.ijcard.2019.06.003.

    Article  PubMed  Google Scholar 

  41. Nakahara T, Strauss HW. From inflammation to calcification in atherosclerosis. Eur J Nucl Med Mol Imaging. 2017;44:858–60. https://doi.org/10.1007/s00259-016-3608-x.

    Article  PubMed  Google Scholar 

  42. Becker A, Leber A, Becker C, Knez A. Predictive value of coronary calcifications for future cardiac events in asymptomatic individuals. Am Heart J. 2008;155:154–60. https://doi.org/10.1016/j.ahj.2007.08.024.

    Article  PubMed  Google Scholar 

  43. Cal-González J, Tsoumpas C, Lassen ML, Rasul S, Koller L, Hacker M, et al. Impact of motion compensation and partial volume correction for 18F -NaF PET/CT imaging of coronary plaque. Phys Med Biol. 2017;63:015005. https://doi.org/10.1088/1361-6560/aa97c8.

    Article  PubMed  Google Scholar 

  44. Lassen ML, Kwiecinski J, Cadet S, Dey D, Wang C, Dweck MR, et al. Data-Driven Gross Patient Motion Detection and Compensation: implications for Coronary 18F -NaF PET Imaging. J Nucl Med. 2019;60:830–6. https://doi.org/10.2967/jnumed.118.217877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Prof. Thomas Beyer and Dr. Ivo Raush from the QIMP Team, Medical University Vienna, for their advice on the imaging reconstruction protocol.

Funding

This research was funded by the Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support (grant number: ZYLX202110), the National Natural Science Foundation of China (grant number: 82171994), the Beijing Municipal Natural Science Foundation (grant number: 7232040), the Beijing Hospitals Authority Youth Program (grant number: QML20230603), the Beijing Hospitals Authority’s Ascent Plan (grant number: DFL20220605), and the Science and Technology Development Fund of Beijing Anzhen Hospital (NO. AZ2022).

Author information

Authors and Affiliations

Authors

Contributions

Drs GM, WW, LH and Profs ZX, YY contributed equally to the study. Prof ZX had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Concept and design: GM, WW, LH, ZX, YY. Acquisition, analysis, or interpretation of data: GM, WW, LH, ZY, MJ, WS, WB. Drafting of the manuscript: GM, WW, LX. Critical revision of the manuscript for important intellectual content: ZX, LX, YM, MT. Statistical analysis: GM, WW, LH, ZY. Obtained funding: ZX, YY, LH. Supervision: ZX, YY, LX.

Corresponding authors

Correspondence to Yang Yu or Xiaoli Zhang.

Ethics declarations

Ethics approval

This study was conducted in accordance with the Declaration of Helsinki and approved by the Beijing Anzhen Hospital Medical Ethics Committee (reference number: 2018055X).

Consent to participate

Written informed consent was obtained from all participants.

Consent to publish

The authors affirm that human research participants provided informed consent for publication of the images in Figs. 2, 3 and 7.

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Wen, W., Li, H. et al. Coronary sodium [18F]fluoride activity predicts outcomes post-CABG: a comparative evaluation with conventional metrics. Eur J Nucl Med Mol Imaging (2024). https://doi.org/10.1007/s00259-024-06736-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00259-024-06736-4

Keywords

Navigation