Skip to main content

Advertisement

Log in

PET image denoising based on denoising diffusion probabilistic model

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Due to various physical degradation factors and limited counts received, PET image quality needs further improvements. The denoising diffusion probabilistic model (DDPM) was a distribution learning-based model, which tried to transform a normal distribution into a specific data distribution based on iterative refinements. In this work, we proposed and evaluated different DDPM-based methods for PET image denoising.

Methods

Under the DDPM framework, one way to perform PET image denoising was to provide the PET image and/or the prior image as the input. Another way was to supply the prior image as the network input with the PET image included in the refinement steps, which could fit for scenarios of different noise levels. 150 brain [\(^{18}\)F]FDG datasets and 140 brain [\(^{18}\)F]MK-6240 (imaging neurofibrillary tangles deposition) datasets were utilized to evaluate the proposed DDPM-based methods.

Results

Quantification showed that the DDPM-based frameworks with PET information included generated better results than the nonlocal mean, Unet and generative adversarial network (GAN)-based denoising methods. Adding additional MR prior in the model helped achieved better performance and further reduced the uncertainty during image denoising. Solely relying on MR prior while ignoring the PET information resulted in large bias. Regional and surface quantification showed that employing MR prior as the network input while embedding PET image as a data-consistency constraint during inference achieved the best performance.

Conclusion

DDPM-based PET image denoising is a flexible framework, which can efficiently utilize prior information and achieve better performance than the nonlocal mean, Unet and GAN-based denoising methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lin J-W, Laine AF, Bergmann SR. Improving pet-based physiological quantification through methods of wavelet denoising. IEEE Trans Biomed Eng. 2001;48(2):202–12.

    Article  CAS  PubMed  Google Scholar 

  2. Christian BT, Vandehey NT, Floberg JM, Mistretta CA. Dynamic pet denoising with hypr processing. J Nuclear Med. 2010;51(7):1147–54.

    Article  Google Scholar 

  3. Chan C, Fulton R, Barnett R, Feng DD, Meikle S. Postreconstruction nonlocal means filtering of whole-body pet with an anatomical prior. IEEE Trans Med Imaging. 2014;33(3):636–50.

    Article  PubMed  Google Scholar 

  4. Dutta J, Leahy RM, Li Q. Non-local means denoising of dynamic pet images. PloS One. 2013;8(12):81390.

    Article  Google Scholar 

  5. Yan J, Lim JC-S, Townsend DW. Mri-guided brain pet image filtering and partial volume correction. Phys Med Biol. 2015;60(3):961

  6. Ote K, Hashimoto F, Kakimoto A, Isobe T, Inubushi T, Ota R, Tokui A, Saito A, Moriya T, Omura T, et al. Kinetics-induced block matching and 5-d transform domain filtering for dynamic pet image denoising. IEEE Trans Rad Plasma Med Sci. 2020;4(6):720–8.

    Article  Google Scholar 

  7. Wang Y, Ma G, An L, Shi F, Zhang P, Lalush DS, Wu X, Pu Y, Zhou J, Shen D. Semisupervised tripled dictionary learning for standard-dose pet image prediction using low-dose pet and multimodal mri. IEEE Trans Biomed Eng. 2016;64(3):569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xiang L, Qiao Y, Nie D, An L, Lin W, Wang Q, Shen D. Deep auto-context convolutional neural networks for standard-dose pet image estimation from low-dose pet/mri. Neurocomputing. 2017;267:406–16.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kaplan S, Zhu Y-M. Full-dose pet image estimation from low-dose pet image using deep learning: a pilot study. J Digit Imaging. 2019;32(5):773–8.

    Article  PubMed  Google Scholar 

  10. Cui J, Gong K, Guo N, Wu C, Meng X, Kim K, Zheng K, Wu Z, Fu L, Xu B, et al. Pet image denoising using unsupervised deep learning. Eur J Nuclear Med Mol Imaging. 2019;46(13):2780–9.

    Article  Google Scholar 

  11. Chen KT, Gong E, Carvalho Macruz FB, Xu J, Boumis A, Khalighi M, Poston KL, Sha SJ, Greicius MD, Mormino E, et al. Ultra-low-dose 18f-florbetaben amyloid pet imaging using deep learning with multi-contrast mri inputs. Radiol. 2019;290(3):649–56.

    Article  Google Scholar 

  12. Hashimoto F, Ohba H, Ote K, Teramoto A, Tsukada H. Dynamic pet image denoising using deep convolutional neural networks without prior training datasets. IEEE Access. 2019;7:96594–603.

    Article  Google Scholar 

  13. Costa-Luis CO, Reader AJ. Micro-networks for robust mr-guided low count pet imaging. IEEE Trans Rad Plasma Med Sci. 2020;5(2):202–12.

    Article  Google Scholar 

  14. Schramm G, Rigie D, Vahle T, Rezaei A, Van Laere K, Shepherd T, Nuyts J, Boada F. Approximating anatomically-guided pet reconstruction in image space using a convolutional neural network. Neuroimage. 2021;224:117399.

    Article  CAS  PubMed  Google Scholar 

  15. Mehranian A, Wollenweber SD, Walker MD, Bradley KM, Fielding PA, Su K-H, Johnsen R, Kotasidis F, Jansen FP, McGowan DR. Image enhancement of whole-body oncology [18f]-fdg pet scans using deep neural networks to reduce noise. Eur J Nuclear Med Mol Imaging. 2022;49(2):539–49.

    Article  CAS  Google Scholar 

  16. Daveau RS, Law I, Henriksen OM, Hasselbalch SG, Andersen UB, Anderberg L, Højgaard L, Andersen FL, Ladefoged CN. Deep learning based low-activity pet reconstruction of [11c] pib and [18f] fe-pe2i in neurodegenerative disorders. NeuroImage. 2022;259:119412.

    Article  CAS  PubMed  Google Scholar 

  17. Ouyang J, Chen KT, Gong E, Pauly J, Zaharchuk G. Ultra-low-dose pet reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med Phy. 2019;46(8):3555–64.

    Article  CAS  Google Scholar 

  18. Lei Y, Dong X, Wang T, Higgins K, Liu T, Curran WJ, Mao H, Nye JA. Yang X Whole-body pet estimation from low count statistics using cycle-consistent generative adversarial networks. Phys Med Biol. 2019;64(21):215017.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhou L, Schaefferkoetter JD, Tham IW, Huang G, Yan J. Supervised learning with cyclegan for low-dose fdg pet image denoising. Med Image Anal. 2020;65:101770.

    Article  PubMed  Google Scholar 

  20. Song T-A, Chowdhury SR, Yang F, Dutta J. Pet image super-resolution using generative adversarial networks. Neural Netw. 2020;125:83–91.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sanaat A, Shiri I, Arabi H, Mainta I, Nkoulou R, Zaidi H. Deep learning-assisted ultra-fast/low-dose whole-body pet/ct imaging. Eur J Nuclear Med Mol Imaging. 2021;48(8):2405–15.

    Article  Google Scholar 

  22. Xue S, Guo R, Bohn KP, Matzke J, Viscione M, Alberts I, Meng H, Sun C, Zhang M, Zhang M, et al. A cross-scanner and cross-tracer deep learning method for the recovery of standard-dose imaging quality from low-dose pet. Eur J Nuclear Med Mol Imaging. 2022;49(6):1843–56.

    Article  Google Scholar 

  23. Gong K, Guan J, Liu C-C, Qi J. Pet image denoising using a deep neural network through fine tuning. IEEE Trans Rad Plasma Med Sci. 2018;3(2):153–61.

    Article  Google Scholar 

  24. Liu H, Wu J, Lu W, Onofrey JA, Liu Y-H, Liu C. Noise reduction with cross-tracer and cross-protocol deep transfer learning for low-dose pet. Phys Med Biol. 2020;65(18):185006.

    Article  CAS  PubMed  Google Scholar 

  25. Chen KT, Schürer M, Ouyang J, Koran MEI, Davidzon G, Mormino E, Tiepolt S, Hoffmann K-T, Sabri O, Zaharchuk G, et al. Generalization of deep learning models for ultra-low-count amyloid pet/mri using transfer learning. Eur J Nuclear Med Mol Imaging. 2020;47(13):2998–3007.

    Article  CAS  Google Scholar 

  26. Cui J, Gong K, Guo N, Wu C, Kim K, Liu H, Li Q. Populational and individual information based pet image denoising using conditional unsupervised learning. Phys Med Biol. 2021;66(15):155001.

    Article  CAS  Google Scholar 

  27. Zhou B, Miao T, Mirian N, Chen X, Xie H, Feng Z, Guo X, Li X, Zhou SK, Duncan JS, et al. Federated transfer learning for low-dose pet denoising: a pilot study with simulated heterogeneous data. IEEE Transactions on Radiation and Plasma Medical Sciences; 2022

  28. Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic models. Adv Neural Inf Process Syst. 2020;33:6840–51.

    Google Scholar 

  29. Song Y, Ermon S. Generative modeling by estimating gradients of the data distribution. Advances in Neural Information Processing Systems. 2019;32

  30. Song Y, Sohl-Dickstein J, Kingma DP, Kumar A, Ermon S, Poole B. Score-based generative modeling through stochastic differential equations. 2020. arXiv:2011.13456

  31. Edupuganti V, Mardani M, Vasanawala S, Pauly J. Uncertainty quantification in deep MRI reconstruction. IEEE Trans Med Imaging. 2020;40(1):239–50.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wu P, Sisniega A, Uneri A, Han R, Jones C, Vagdargi P, Zhang X, Luciano M, Anderson W, Siewerdsen J. Using uncertainty in deep learning reconstruction for cone-beam CT of the brain. 2021. arXiv:2108.09229

  33. Sudarshan VP, Upadhyay U, Egan GF, Chen Z, Awate SP. Towards lower-dose PET using physics-based uncertainty-aware multimodal learning with robustness to out-of-distribution data. Med Image Anal. 2021;73:102187.

    Article  PubMed  Google Scholar 

  34. Dhariwal P, Nichol A. Diffusion models beat gans on image synthesis. Adv Neural Inf Process Syst. 2021;34:8780–94.

    Google Scholar 

  35. Rombach R, Blattmann A, Lorenz D, Esser P, Ommer B. High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition; 2022. pp. 10684–10695

  36. Saharia C, Ho J, Chan W, Salimans T, Fleet DJ, Norouzi M. Image super-resolution via iterative refinement. 2021. arXiv:2104.07636

  37. Lugmayr A, Danelljan M, Romero A, Yu F, Timofte R, Van Gool L. Repaint: inpainting using denoising diffusion probabilistic models. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition; 2022. pp. 11461–11471

  38. Jalal A, Arvinte M, Daras G, Price E, Dimakis AG, Tamir J. Robust compressed sensing mri with deep generative priors. Adv Neural Inf Process Syst. 2021;34:14938–54.

    Google Scholar 

  39. Chung H, Ye JC. Score-based diffusion models for accelerated mri. Medical Image Analysis; 2022 102479

  40. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on computer vision and pattern recognition; 2017. pp. 1125–1134

  41. Tiepolt S, Hesse S, Patt M, Luthardt J, Schroeter ML, Hoffmann K-T, Weise D, Gertz H-J, Sabri O, Barthel H. Early [18f] florbetaben and [11c] pib pet images are a surrogate biomarker of neuronal injury in alzheimer’s disease. Eur J Nuclear Med Mol Imaging. 2016;43(9):1700–9.

    Article  CAS  Google Scholar 

  42. Hammes J, Leuwer I, Bischof GN, Drzezga A, Eimeren T. Multimodal correlation of dynamic [18f]-av-1451 perfusion pet and neuronal hypometabolism in [18f]-fdg pet. Eur J Nuclear Med Mol Imaging. 2017;44(13):2249–56.

    Article  CAS  Google Scholar 

  43. Visser D, Wolters EE, Verfaillie SC, Coomans EM, Timmers T, Tuncel H, Reimand J, Boellaard R, Windhorst AD, Scheltens P, et al. Tau pathology and relative cerebral blood flow are independently associated with cognition in alzheimer’s disease. Eur J Nuclear Med Mol Imaging. 2020;47(13):3165–75.

    Article  CAS  Google Scholar 

  44. Avants BB, Tustison N, Song G, et al. Advanced normalization tools (ants). Insight J. 2009;2(365):1–35.

    Google Scholar 

  45. Fischl B. Freesurfer Neuroimage. 2012;62(2):774–81.

    Article  PubMed  Google Scholar 

  46. Qi J, Leahy RM. Iterative reconstruction techniques in emission computed tomography. Phys Med Biol. 2006;51(15):541.

    Article  Google Scholar 

  47. Chung H, Sim B, Ye JC. Come-closer-diffuse-faster: accelerating conditional diffusion models for inverse problems through stochastic contraction. In: Proceedings of the IEEE/CVF Conference on computer vision and pattern recognition; 2022. pp. 12413–12422

Download references

Funding

This work was supported by the National Institutes of Health under grants R21AG067422, R03EB030280, R01AG078250, P41EB022544 and P01AG036694.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuang Gong.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

For the [\(^{18}\)F]FDG datasets, informed consent was waived due to the retrospective merits of the datasets. For the [\(^{18}\)F]MK-6240 datasets, informed consent was obtained from all the participants.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, K., Johnson, K., El Fakhri, G. et al. PET image denoising based on denoising diffusion probabilistic model. Eur J Nucl Med Mol Imaging 51, 358–368 (2024). https://doi.org/10.1007/s00259-023-06417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06417-8

Keywords

Navigation