Skip to main content

Advertisement

Log in

Functional significance of myocardial activity at 18F-FAPI PET/CT in hypertrophic cardiomyopathy identified by cardiac magnetic resonance feature-tracking strain analysis

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to evaluate the functional significance of 18F-labeled fibroblast activation protein inhibitor (18F-FAPI) activity in hypertrophic cardiomyopathy (HCM) by comparison with cardiac magnetic resonance feature-tracking (CMR-FT) strain analysis.

Methods

A total of 49 HCM patients were included in this study. Two independent control groups of healthy participants with a matched age and sex to the HCM patients were also enrolled. Left ventricular (LV) 18F-FAPI activity was analyzed for extent (FAPI%) and intensity (maximum target-to-background ratio, TBRmax). The CMR tissue characterization parameters of the LV included late gadolinium enhancement, native T1 value, and extracellular volume fraction. LV strain analysis was performed in radial, circumferential, and longitudinal peak strains (PS).

Results

Intense LV myocardial 18F-FAPI uptake was observed in HCM patients, whereas no obvious uptake was detected in healthy participants (median TBRmax, 9.1 vs. 1.2, p < 0.001). The strain parameters of HCM patients, compared with healthy participants, were significantly impaired (mean radial PS, 23.5 vs. 36.0, mean circumferential PS, −14.5 vs. −20.0, and mean longitudinal PS, −9.9 vs. −16.0, all p < 0.001). At segmental levels, there was a moderate correlation between 18F-FAPI activity and strain parameters. The number of positive 18F-FAPI uptake segments (n = 653) was higher than that of hypertrophic segments (n = 190) and positive CMR tissue characterization segments (n = 525) (all p < 0.001). In segments with negative CMR tissue characterization findings, the strain capacity of positive 18F-FAPI uptake segments was lower than that of negative 18F-FAPI uptake segments (median radial PS, 30.5 vs. 36.1, p = 0.026 and median circumferential PS, −18.4 vs. −19.7, p = 0.041).

Conclusion

18F-FAPI imaging can partially reflect the potential strain reduction in HCM patients. 18F-FAPI imaging detects more involved myocardium than CMR tissue characterization techniques, and the additionally identified myocardium has impaired strain capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Code availability

Not applicable.

References

  1. Chan RH, Maron BJ, Olivotto I, Pencina MJ, Assenza GE, Haas T, et al. Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation. 2014;130:484–95. https://doi.org/10.1161/CIRCULATIONAHA.113.007094.

    Article  PubMed  Google Scholar 

  2. Bittencourt MI, Cader SA, Araújo DV, Salles ALF, Albuquerque FN, Spineti PPM, et al. Role of myocardial fibrosis in hypertrophic cardiomyopathy: a systematic review and updated meta-analysis of risk markers for sudden death. Arq Bras Cardiol. 2019;112:281–9. https://doi.org/10.5935/abc.20190045.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79. https://doi.org/10.1093/eurheartj/ehu284.

    Article  PubMed  Google Scholar 

  4. Maron BJ, Maron MS, Rowin EJ. Perspectives on the overall risks of living with hypertrophic cardiomyopathy. Circulation. 2017;135:2317–9. https://doi.org/10.1161/CIRCULATIONAHA.117.027738.

    Article  PubMed  Google Scholar 

  5. Mavrogeni S, Petrou E, Kolovou G, Theodorakis G, Iliodromitis E. Prediction of ventricular arrhythmias using cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging. 2013;14:518–25. https://doi.org/10.1093/ehjci/jes302.

    Article  PubMed  Google Scholar 

  6. Sara L. Myocardial fibrosis in hypertrophic cardiomyopathy: what remains to be proven? Arq Bras Cardiol. 2019;112:290–1. https://doi.org/10.5935/abc.20190043.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kurose H. Cardiac fibrosis and fibroblasts Cells. 2021;10:1716. https://doi.org/10.3390/cells10071716.

    Article  CAS  PubMed  Google Scholar 

  8. McDowell KS, Arevalo HJ, Maleckar MM, Trayanova NA. Susceptibility to arrhythmia in the infarcted heart depends on myofibroblast density. Biophys J. 2011;101:1307–15. https://doi.org/10.1016/j.bpj.2011.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baum J, Duffy HS. Fibroblasts and myofibroblasts: what are we talking about? J Cardiovasc Pharmacol. 2011;57:376–9. https://doi.org/10.1097/FJC.0b013e3182116e39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Varasteh Z, Mohanta S, Robu S, Braeuer M, Li Y, Omidvari N, et al. Molecular imaging of fibroblast activity after myocardial Infarction using a 68Ga-labeled fibroblast activation protein inhibitor, FAPI-04. J Nucl Med. 2019;60:1743–9. https://doi.org/10.2967/jnumed.119.226993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toms J, Kogler J, Maschauer S, Daniel C, Schmidkonz C, Kuwert T, et al. Targeting fibroblast activation protein: radiosynthesis and preclinical evaluation of an 18F-labeled FAP inhibitor. J Nucl Med. 2020;61:1806–13. https://doi.org/10.2967/jnumed.120.242958.

    Article  CAS  PubMed  Google Scholar 

  12. Kessler L, Kupusovic J, Ferdinandus J, Hirmas N, Umutlu L, Zarrad F, et al. Visualization of fibroblast activation after myocardial infarction using 68Ga-FAPI PET. Clin Nucl Med. 2021;46:807–13. https://doi.org/10.1097/RLU.0000000000003745.

    Article  PubMed  Google Scholar 

  13. Diekmann J, Koenig T, Zwadlo C, Derlin T, Neuser J, Thackeray JT, et al. Molecular imaging identifies fibroblast activation beyond the infarct region after acute myocardial infarction. J Am Coll Cardiol. 2021;77:1835–7. https://doi.org/10.1016/j.jacc.2021.02.019.

    Article  CAS  PubMed  Google Scholar 

  14. Shi X, Lin X, Huo L, Li X. Cardiac fibroblast activation in dilated cardiomyopathy detected by positron emission tomography. J Nucl Cardiol. 2022;29:881–4. https://doi.org/10.1007/s12350-020-02315-w.

    Article  PubMed  Google Scholar 

  15. Chen BX, Xing HQ, Gong JN, Guo XJ, Xi XY, Yang YH, et al. Imaging of cardiac fibroblast activation in patients with chronic thromboembolic pulmonary hypertension. Eur J Nucl Med Mol Imaging. 2022;49:1211–22. https://doi.org/10.1007/s00259-021-05577-9.

    Article  CAS  PubMed  Google Scholar 

  16. Wang L, Wang Y, Wang J, Xiao M, Xi XY, Chen BX, et al. Myocardial activity at 18F-FAPI PET/CT and risk for sudden cardiac death in hypertrophic cardiomyopathy. Radiology. 2023;306:e221052. https://doi.org/10.1148/radiol.221052.

    Article  PubMed  Google Scholar 

  17. Xu J, Yang W, Zhao S, Lu M. State-of-the-art myocardial strain by CMR feature tracking: clinical applications and future perspectives. Eur Radiol. 2022;32:5424–35. https://doi.org/10.1007/s00330-022-08629-2.

    Article  PubMed  Google Scholar 

  18. Xu HY, Chen J, Yang ZG, Li R, Shi K, Zhang Q, et al. Early marker of regional left ventricular deformation in patients with hypertrophic cardiomyopathy evaluated by MRI tissue tracking: The effects of myocardial hypertrophy and fibrosis. J Magn Reson Imaging. 2017;46:1368–76. https://doi.org/10.1002/jmri.25681.

    Article  PubMed  Google Scholar 

  19. Vigneault DM, Yang E, Jensen PJ, Tee MW, Farhad H, Chu L, et al. Left ventricular strain is abnormal in preclinical and overt hypertrophic cardiomyopathy: Cardiac MR feature tracking. Radiology. 2019;290:640–8. https://doi.org/10.1148/radiol.2018180339.

    Article  PubMed  Google Scholar 

  20. Song Y, Bi X, Chen L, Yang K, Chen X, Dong Z, et al. Reduced myocardial septal function assessed by cardiac magnetic resonance feature tracking in patients with hypertrophic obstructive cardiomyopathy: associated with histological myocardial fibrosis and ventricular arrhythmias. Eur Heart J Cardiovasc Imaging. 2022;23:1006–15. https://doi.org/10.1093/ehjci/jeac032.

    Article  PubMed  Google Scholar 

  21. Zhang Y, Wang YL, Yang MF, Wang L. Cardiac fibroblast activation imaging in a patient with hypertrophic cardiomyopathy. J Nucl Cardiol. 2023;30:1697–9. https://doi.org/10.1007/s12350-022-02967-w.

    Article  PubMed  Google Scholar 

  22. Wang S, Zhou X, Xu X, Ding J, Liu S, Hou X, et al. Clinical translational evaluation of Al18F-NOTA-FAPI for fibroblast activation protein-targeted tumour imaging. Eur J Nucl Med Mol Imaging. 2021;48:4259–71. https://doi.org/10.1007/s00259-021-05470-5.

    Article  CAS  PubMed  Google Scholar 

  23. Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J. 2012;33:1268–78. https://doi.org/10.1093/eurheartj/ehr481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kawel-Boehm N, Maceira A, Valsangiacomo-Buechel ER, Vogel-Claussen J, Turkbey EB, Williams R, et al. Normal values for cardiovascular magnetic resonance in adults and children. J Cardiovasc Magn Reson. 2015;17:29. https://doi.org/10.1186/s12968-015-0111-7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu J, Zhao S, Yu S, Wu G, Wang D, Liu L, et al. Patterns of replacement fibrosis in hypertrophic cardiomyopathy. Radiology. 2022;302:298–306. https://doi.org/10.1148/radiol.2021210914.

    Article  PubMed  Google Scholar 

  26. Petersen SE, Jerosch-Herold M, Hudsmith LE, Robson MD, Francis JM, Doll HA, et al. Evidence for microvascular dysfunction in hypertrophic cardiomyopathy: new insights from multiparametric magnetic resonance imaging. Circulation. 2007;115:2418–25. https://doi.org/10.1161/CIRCULATIONAHA.

    Article  PubMed  Google Scholar 

  27. Chaldoupi SM, Loh P, Hauer RN, de Bakker JM, van Rijen HV. The role of connexin40 in atrial fibrillation. Cardiovasc Res. 2009;84:15–23. https://doi.org/10.1093/cvr/cvp203.

    Article  CAS  PubMed  Google Scholar 

  28. Treutlein C, Distler JHW, Tascilar K, Fakhouri SC, Györfi AH, Atzinger A, et al. Assessment of myocardial fibrosis in patients with systemic sclerosis using [68Ga] Ga-FAPI-04-PET-CT. Eur J Nucl Med Mol Imaging. 2023;50:1629–35. https://doi.org/10.1007/s00259-022-06081-4.

    Article  CAS  PubMed  Google Scholar 

  29. Siebermair J, Köhler MI, Kupusovic J, Nekolla SG, Kessler L, Ferdinandus J, et al. Cardiac fibroblast activation detected by Ga-68 FAPI PET imaging as a potential novel biomarker of cardiac injury/remodeling. J Nucl Cardiol. 2021;28:812–21. https://doi.org/10.1007/s12350-020-02307-w.

    Article  CAS  PubMed  Google Scholar 

  30. Xie B, Wang J, Xi XY, Guo X, Chen BX, Li L, et al. Fibroblast activation protein imaging in reperfused ST-elevation myocardial infarction: comparison with cardiac magnetic resonance imaging. Eur J Nucl Med Mol Imaging. 2022;49:2786–97. https://doi.org/10.1007/s00259-021-05674-9.

    Article  CAS  PubMed  Google Scholar 

  31. Barton AK, Tzolos E, Bing R, Singh T, Weber W, Schwaiger M, et al. Emerging molecular imaging targets and tools for myocardial fibrosis detection. Eur Heart J Cardiovasc Imaging. 2023;24:261–75. https://doi.org/10.1093/ehjci/jeac242.

    Article  PubMed  Google Scholar 

  32. Moon JC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;43:2260–4. https://doi.org/10.1016/j.jacc.2004.03.035.

    Article  PubMed  Google Scholar 

  33. Moravsky G, Ofek E, Rakowski H, Butany J, Williams L, Ralph-Edwards A, et al. Myocardial fibrosis in hypertrophic cardiomyopathy: accurate reflection of histopathological findings by CMR. JACC Cardiovasc Imaging. 2013;6:587–96. https://doi.org/10.1016/j.jcmg.2012.09.018.

    Article  PubMed  Google Scholar 

  34. Green JJ, Berger JS, Kramer CM, Salerno M. Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging. 2012;5:370–7. https://doi.org/10.1016/j.jcmg.2011.11.021.

    Article  PubMed  Google Scholar 

  35. Mentias A, Raeisi-Giglou P, Smedira NG, Feng K, Sato K, Wazni O, et al. Late gadolinium enhancement in patients with hypertrophic cardiomyopathy and preserved systolic function. J Am Coll Cardiol. 2018;72:857–70. https://doi.org/10.1016/j.jacc.2018.05.060.

    Article  PubMed  Google Scholar 

  36. Ambale-Venkatesh B, Lima JA. Cardiac MRI: a central prognostic tool in myocardial fibrosis. Nat Rev Cardiol. 2015;12:18–29. https://doi.org/10.1038/nrcardio.2014.159.

    Article  CAS  PubMed  Google Scholar 

  37. Popescu BA, Rosca M. Imaging of myocardial fibrosis in hypertrophic cardiomyopathy: what is the gold standard? Heart. 2014;100:605–6. https://doi.org/10.1136/heartjnl-2013-305359.

    Article  PubMed  Google Scholar 

  38. Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M. T1 mapping: basic techniques and clinical applications. JACC Cardiovasc Imaging. 2016;9:67–81. https://doi.org/10.1016/j.jcmg.2015.11.005.

    Article  PubMed  Google Scholar 

  39. Parekh K, Markl M, Deng J, de Freitas RA, Rigsby CK. T1 mapping in children and young adults with hypertrophic cardiomyopathy. Int J Cardiovasc Imaging. 2017;33:109–17. https://doi.org/10.1007/s10554-016-0979-9.

    Article  PubMed  Google Scholar 

  40. Ho CY, Abbasi SA, Neilan TG, Shah RV, Chen Y, Heydari B, et al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Cardiovasc Imaging. 2013;6:415–22. https://doi.org/10.1161/CIRCIMAGING.112.000333.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122:138–44. https://doi.org/10.1161/CIRCULATIONAHA.109.930636.

    Article  PubMed  Google Scholar 

  42. Li Y, Liu X, Yang F, Wang J, Xu Y, Fang T, et al. Prognostic value of myocardial extracellular volume fraction evaluation based on cardiac magnetic resonance T1 mapping with T1 long and short in hypertrophic cardiomyopathy. Eur Radiol. 2021;31:4557–67. https://doi.org/10.1007/s00330-020-07650-7.

    Article  PubMed  Google Scholar 

  43. Hinojar R, Fernández-Golfín C, González-Gómez A, Rincón LM, Plaza-Martin M, Casas E, et al. Prognostic implications of global myocardial mechanics in hypertrophic cardiomyopathy by cardiovascular magnetic resonance feature tracking. Relations to left ventricular hypertrophy and fibrosis. Int J Cardiol. 2017;249:467–72. https://doi.org/10.1016/j.ijcard.2017.07.087.

    Article  PubMed  Google Scholar 

  44. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021;42:3599–726. https://doi.org/10.1093/eurheartj/ehab368.

    Article  CAS  PubMed  Google Scholar 

  45. Yang L, Zhang L, Cao S, Gao C, Xu H, Song T, et al. Advanced myocardial characterization in hypertrophic cardiomyopathy: feasibility of CMR-based feature tracking strain analysis in a case-control study. Eur Radiol. 2020;30:6118–28. https://doi.org/10.1007/s00330-020-06922-6.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2021YFF0501401, 2021YFF0501402, and 2021YFF0501400) and Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support (ZYLX202105).

Author information

Authors and Affiliations

Authors

Contributions

Yu Zhang, Zhixiang Dong, Shihua Zhao, and Min-Fu Yang wrote the draft of the manuscript; Li Wang and Yi-Lu Wang collected and analyzed the clinical data; Bi-Xi Chen and Yao Su analyzed the PET/CT data; Yu Zhang and Zhixiang Dong analyzed the CMR data; Yu Zhang, Zhixiang Dong, Li Wang, Shihua Zhao, and Min-Fu Yang conceived the study and interpreted the results. All authors contributed to the article’s revision, agreed to its submission, and had full access to original data.

Corresponding author

Correspondence to Min-Fu Yang.

Ethics declarations

Ethical approval

All procedures involving human participants were carried out in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was approved by the ethics committee of Beijing Chaoyang Hospital (2021-ke-387).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Patients signed informed consent regarding publishing their data and photographs.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 27 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Dong, Z., Wang, L. et al. Functional significance of myocardial activity at 18F-FAPI PET/CT in hypertrophic cardiomyopathy identified by cardiac magnetic resonance feature-tracking strain analysis. Eur J Nucl Med Mol Imaging 51, 110–122 (2023). https://doi.org/10.1007/s00259-023-06411-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06411-0

Keywords

Navigation