Skip to main content

Advertisement

Log in

Preclinical evaluation of a novel EGFR&c-Met bispecific near infrared probe for visualization of esophageal cancer and metastatic lymph nodes

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to establish a near infrared fluorescent (NIRF) probe based on an EGFR&c-Met bispecific antibody for visualization of esophageal cancer (EC) and metastatic lymph nodes (mLNs).

Methods

EGFR and c-Met expression were assessed by immunohistochemistry. EGFR&c-Met bispecific antibody EMB01 was labeled with IRDye800cw. The binding of EMB01-IR800 was assessed by enzyme linked immunosorbent assay, flow cytometry, and immunofluorescence. Subcutaneous tumors, orthotopic tumors, and patient-derived xenograft (PDX) were established for in vivo fluorescent imaging. PDX models using lymph nodes with or without metastasis were constructed to assess the performance of EMB01-IR800 in differential diagnosis of lymph nodes.

Results

The prevalence of overexpressing EGFR or c-Met was significantly higher than single marker either in EC or corresponding mLNs. The bispecific probe EMB01-IR800 was successfully synthesized, with strong binding affinity. EMB01-IR800 showed strong cellular binding to both Kyse30 (EGFR overexpressing) and OE33 (c-Met overexpressing) cells. In vivo fluorescent imaging showed prominent EMB01-IR800 uptake in either Kyse30 or OE33 subcutaneous tumors. Likewise, EMB01-IR800 exhibited superior tumor enrichment in both thoracic orthotopic esophageal squamous cell carcinoma and abdominal orthotopic esophageal adenocarcinoma models. Moreover, EMB01-IR800 produced significantly higher fluorescence in patient-derived mLNs than in benign lymph nodes.

Conclusion

This study demonstrated the complementary overexpression of EGFR and c-Met in EC. Compared to single-target probes, the EGFR&c-Met bispecific NIRF probe can efficiently depict heterogeneous esophageal tumors and mLNs, which greatly increased the sensitivity of tumor and mLN identification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Lagergren J, Smyth E, Cunningham D, Lagergren P. Oesophageal cancer. Lancet. 2017;390(10110):2383–96. https://doi.org/10.1016/S0140-6736(17)31462-9.

    Article  PubMed  Google Scholar 

  3. Rustgi A, El-Serag HB. Esophageal carcinoma. N Engl J Med. 2015;372(15):1472–3. https://doi.org/10.1056/NEJMc1500692.

    Article  CAS  PubMed  Google Scholar 

  4. Mieog J, Achterberg FB, Zlitni A, Hutteman M, Burggraaf J, Swijnenburg RJ, et al. Fundamentals and developments in fluorescence-guided cancer surgery. Nat Rev Clin Oncol. 2022;19(1):9–22. https://doi.org/10.1038/s41571-021-00548-3.

    Article  CAS  PubMed  Google Scholar 

  5. Boogerd L, Hoogstins C, Schaap DP, Kusters M, Handgraaf H, van der Valk M, et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study. Lancet Gastroenterol Hepatol. 2018;3(3):181–91. https://doi.org/10.1016/S2468-1253(17)30395-3.

    Article  PubMed  Google Scholar 

  6. Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, et al. Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res. 2015;21(16):3658–66. https://doi.org/10.1158/1078-0432.CCR-14-3284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nagengast WB, Hartmans E, Garcia-Allende PB, Peters F, Linssen MD, Koch M, et al. Near-infrared fluorescence molecular endoscopy detects dysplastic oesophageal lesions using topical and systemic tracer of vascular endothelial growth factor A. Gut. 2019;68(1):7–10. https://doi.org/10.1136/gutjnl-2017-314953.

    Article  CAS  PubMed  Google Scholar 

  8. de Gouw D, Rijpkema M, de Bitter T, Baart VM, Sier C, Hernot S, et al. Identifying biomarkers in lymph node metastases of esophageal adenocarcinoma for tumor-targeted imaging. Mol Diagn Ther. 2020;24(2):191–200. https://doi.org/10.1007/s40291-020-00448-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Park SY, Suh JW, Kim DJ, Park JC, Kim EH, Lee CY, et al. Near-infrared lymphatic mapping of the recurrent laryngeal nerve nodes in T1 esophageal cancer. Ann Thorac Surg. 2018;105(6):1613–20. https://doi.org/10.1016/j.athoracsur.2018.01.083.

    Article  PubMed  Google Scholar 

  10. Hachey KJ, Gilmore DM, Armstrong KW, Harris SE, Hornick JL, Colson YL, et al. Safety and feasibility of near-infrared image-guided lymphatic mapping of regional lymph nodes in esophageal cancer. J Thorac Cardiovasc Surg. 2016;152(2):546–54. https://doi.org/10.1016/j.jtcvs.2016.04.025.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ren JL, Wu HF, Wang WJ, Hu GM, Gu B, Zhang M, et al. C-Met as a potential novel prognostic marker in squamous cell carcinoma and adenocarcinoma of esophagus: evidence from a meta-analysis. Panminerva Med. 2017;59(1):97–106. https://doi.org/10.23736/S0031-0808.16.03228-6.

  12. Chan E, Alkhasawneh A, Duckworth LV, Aijaz T, Toro TZ, Lu X, et al. EGFR family and cMet expression profiles and prognostic significance in esophagogastric adenocarcinoma. J Gastrointest Oncol. 2016;7(6):838–847. https://doi.org/10.21037/jgo.2016.06.09.

  13. Xu Y, Peng Z, Li Z, Lu M, Gao J, Li Y, et al. Expression and clinical significance of c-Met in advanced esophageal squamous cell carcinoma. BMC Cancer. 2015;15:6. https://doi.org/10.1186/s12885-014-1001-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grandjenette C, Dicato M, Diederich M. Bispecific antibodies: an innovative arsenal to hunt, grab and destroy cancer cells. Curr Pharm Biotechnol. 2015;16(8):670–83. https://doi.org/10.2174/1389201016666150505124037.

    Article  CAS  PubMed  Google Scholar 

  15. Network CGAR, University AWGA, Agency BC, Hospital BAWS, Institute B, University B, et al. Integrated genomic characterization of oesophageal carcinoma. Nature. 2017;541(7636):169–175. https://doi.org/10.1038/nature20805.

  16. Kashyap MK, Abdel-Rahman O. Expression, regulation and targeting of receptor tyrosine kinases in esophageal squamous cell carcinoma. Mol Cancer. 2018;17(1):54. https://doi.org/10.1186/s12943-018-0790-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shim H. Bispecific antibodies and antibody-drug conjugates for cancer therapy: technological considerations. Biomolecules. 2020;10(3). https://doi.org/10.3390/biom10030360.

  18. Cavaliere A, Sun S, Lee S, Bodner J, Li Z, Huang Y, et al. Development of [(89)Zr]ZrDFO-amivantamab bispecific to EGFR and c-MET for PET imaging of triple-negative breast cancer. Eur J Nucl Med Mol Imaging. 2021;48(2):383–94. https://doi.org/10.1007/s00259-020-04978-6.

    Article  CAS  PubMed  Google Scholar 

  19. Ren F, Wu X, Yang D, Wu D, Gong S, Zhang Y, et al. Abstract 528: EMB-01: an innovative bispecific antibody targeting EGFR and cMet on tumor cells mediates a novel mechanism to improve anti-tumor efficacy. Cancer Res. 2020;80(16_Supplement):528–528. https://doi.org/10.1158/1538-7445.AM2020-528.

  20. Wang L, Liang M, Xiao Y, Chen J, Mei C, Lin Y, et al. NIR-II navigation with an EGFR-targeted probe improves imaging resolution and sensitivity of detecting micrometastases in esophageal squamous cell carcinoma xenograft models. Mol Pharm. 2022;19(10):3563–75. https://doi.org/10.1021/acs.molpharmaceut.2c00115.

    Article  CAS  PubMed  Google Scholar 

  21. Liang M, Yang M, Wang F, Wang X, He B, Mei C, et al. Near-infrared fluorescence-guided resection of micrometastases derived from esophageal squamous cell carcinoma using a c-Met-targeted probe in a preclinical xenograft model. J Control Release. 2021;332:171–83. https://doi.org/10.1016/j.jconrel.2021.02.019.

    Article  CAS  PubMed  Google Scholar 

  22. Lee NP, Chan CM, Tung LN, Wang HK, Law S. Tumor xenograft animal models for esophageal squamous cell carcinoma. J Biomed Sci. 2018;25(1):66. https://doi.org/10.1186/s12929-018-0468-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu S, Zhu J, Song Y, Chen J, Wang L, Zhou M, et al. Bispecific affibody molecule targeting HPV16 and HPV18E7 oncoproteins for enhanced molecular imaging of cervical cancer. Appl Microbiol Biotechnol. 2018;102(17):7429–39. https://doi.org/10.1007/s00253-018-9167-2.

    Article  CAS  PubMed  Google Scholar 

  24. Salem ME, Puccini A, Xiu J, Raghavan D, Lenz HJ, Korn WM, et al. Comparative molecular analyses of esophageal squamous cell carcinoma, esophageal adenocarcinoma, and gastric adenocarcinoma. Oncologist. 2018;23(11):1319–27. https://doi.org/10.1634/theoncologist.2018-0143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang K, Du Y, Zhang Z, He K, Cheng Z, Yin L, et al. Fluorescence image-guided tumour surgery. Nat Rev Bioeng. 2023;1(3):161–79. https://doi.org/10.1038/s44222-022-00017-1.

    Article  Google Scholar 

  26. Houghton JL, Zeglis BM, Abdel-Atti D, Aggeler R, Sawada R, Agnew BJ, et al. Site-specifically labeled CA19.9-targeted immunoconjugates for the PET, NIRF, and multimodal PET/NIRF imaging of pancreatic cancer. Proc Natl Acad Sci. 2015;112(52):15850–15855. https://doi.org/10.1073/pnas.1506542112.

  27. Sugawara K, Yamashita H, Uemura Y, Mitsui T, Yagi K, Nishida M, et al. Numeric pathologic lymph node classification shows prognostic superiority to topographic pN classification in esophageal squamous cell carcinoma. Surgery. 2017;162(4):846–56. https://doi.org/10.1016/j.surg.2017.06.013.

    Article  PubMed  Google Scholar 

  28. Cerny M, Dunet V, Prior JO, Hahnloser D, Wagner AD, Meuli RA, et al. Initial staging of locally advanced rectal cancer and regional lymph nodes: comparison of diffusion-weighted MRI with 18F-FDG-PET/CT. Clin Nucl Med. 2016;41(4):289–95. https://doi.org/10.1097/RLU.0000000000001172.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gong S, Ren F, Wu D, Wu X, Wu C. Fabs-in-tandem immunoglobulin is a novel and versatile bispecific design for engaging multiple therapeutic targets. Mabs-Austin. 2017;9(7):1118–28. https://doi.org/10.1080/19420862.2017.1345401.

    Article  CAS  Google Scholar 

  30. Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019;18(8):585–608. https://doi.org/10.1038/s41573-019-0028-1.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao Y, Mei C, Xu D, Yang F, Yang M, Bi L, et al. Identification of a CEACAM5 targeted nanobody for positron emission tomography imaging and near-infrared fluorescence imaging of colorectal cancer. Eur J Nucl Med Mol I. 2023. https://doi.org/10.1007/s00259-023-06183-7.

    Article  Google Scholar 

  32. Wang Q, Wang J, Yan H, Li Z, Wang K, Kang F, et al. An ultra-small bispecific protein augments tumor penetration and treatment for pancreatic cancer. Eur J Nucl Med Mol I. 2023. https://doi.org/10.1007/s00259-023-06115-5.

    Article  Google Scholar 

  33. Thakur A, Huang M, Lum LG. Bispecific antibody based therapeutics: strengths and challenges. Blood Rev. 2018;32(4):339–47. https://doi.org/10.1016/j.blre.2018.02.004.

    Article  CAS  PubMed  Google Scholar 

  34. Krishnamurthy A, Jimeno A. Bispecific antibodies for cancer therapy: a review. Pharmacol Ther. 2018;185:122–34. https://doi.org/10.1016/j.pharmthera.2017.12.002.

    Article  CAS  PubMed  Google Scholar 

  35. Guilliams M, Bruhns P, Saeys Y, Hammad H, Lambrecht BN. The function of Fcγ receptors in dendritic cells and macrophages. Nat Rev Immunol. 2014;14(2):94–108. https://doi.org/10.1038/nri3582.

    Article  CAS  PubMed  Google Scholar 

  36. Qing Z, Gabrail N, Uprety D, Rotow J, Han B, Jänne PA, et al. 22P EMB-01: an EGFR-cMET bispecific antibody, in advanced/metastatic solid tumors phase I results. Ann Oncol. 2022;33:S39–40. https://doi.org/10.1016/j.annonc.2022.02.031.

    Article  Google Scholar 

  37. Bruhns P, Jönsson F. Mouse and human FcR effector functions. Immunol Rev. 2015;268(1):25–51. https://doi.org/10.1111/imr.12350.

    Article  CAS  PubMed  Google Scholar 

  38. He LJ, Xie C, Wang ZX, Li Y, Xiao YT, Gao XY, et al. Submucosal saline injection followed by endoscopic ultrasound versus endoscopic ultrasound only for distinguishing between T1a and T1b esophageal cancer. Clin Cancer Res. 2020;26(2):384–90. https://doi.org/10.1158/1078-0432.CCR-19-1722.

    Article  CAS  PubMed  Google Scholar 

  39. Li M, Anastassiades CP, Joshi B, Komarck CM, Piraka C, Elmunzer BJ, et al. Affinity peptide for targeted detection of dysplasia in Barrett’s esophagus. Gastroenterology. 2010;139(5):1472–80. https://doi.org/10.1053/j.gastro.2010.07.007.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (92259204) and the Natural Science Foundation of Guangdong Province (2022A1515012509).

Author information

Authors and Affiliations

Authors

Contributions

Dan Li, Yaqin Zhang, and Hong Shan contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Mingzhu Liang, Lizhu Wang, Yitai Xiao, Meilin Yang, and Chaoming Mei. The manuscript was written by Mingzhu Liang and Yitai Xiao. All the authors revised previous versions of the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yaqin Zhang, Hong Shan or Dan Li.

Ethics declarations

Ethics approval

The use of pathologic sections had been approved by ethical review board of the Fifth Affiliated Hospital of Sun Yat-sen University with waiving of informed consents. The animal experiments have been approved by the animal welfare committee of the Fifth Affiliated Hospital of Sun Yat-sen University (00094).

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Digestive tract

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1425 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, M., Wang, L., Xiao, Y. et al. Preclinical evaluation of a novel EGFR&c-Met bispecific near infrared probe for visualization of esophageal cancer and metastatic lymph nodes. Eur J Nucl Med Mol Imaging 50, 2787–2801 (2023). https://doi.org/10.1007/s00259-023-06250-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06250-z

Keywords

Navigation