Skip to main content

Advertisement

Log in

Preclinical development of ZED8, an 89Zr immuno-PET reagent for monitoring tumor CD8 status in patients undergoing cancer immunotherapy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

A Correction to this article was published on 25 November 2022

This article has been updated

Abstract

Background

ZED8 is a novel monovalent antibody labeled with zirconium-89 for the molecular imaging of CD8. This work describes nonclinical studies performed in part to provide rationale for and to inform expectations in the early clinical development of ZED8, such as in the studies outlined in clinical trial registry NCT04029181 [1].

Methods

Surface plasmon resonance, X-ray crystallography, and flow cytometry were used to characterize the ZED8-CD8 binding interaction, its specificity, and its impact on T cell function. Immuno-PET with ZED8 was assessed in huCD8+ tumor-bearing mice and in non-human primates. Plasma antibody levels were measured by ELISA to determine pharmacokinetic parameters, and OLINDA 1.0 was used to estimate radiation dosimetry from image-derived biodistribution data.

Results

ZED8 selectively binds to human CD8α at a binding site approximately 9 Å from that of MHCI making mutual interference unlikely. The equilibrium dissociation constant (KD) is 5 nM. ZED8 binds to cynomolgus CD8 with reduced affinity (66 nM) but it has no measurable affinity for rat or mouse CD8. In a series of lymphoma xenografts, ZED8 imaging was able to identify different CD8 levels concordant with flow cytometry. In cynomolgus monkeys with tool compound 89Zr-aCD8v17, lymph nodes were conspicuous by imaging 24 h post-injection, and the pharmacokinetics suggested a flat-fixed first-in-human dose of 4 mg per subject. The whole-body effective dose for an adult human was estimated to be 0.48 mSv/MBq, comparable to existing 89Zr immuno-PET reagents.

Conclusion

89Zr immuno-PET with ZED8 appears to be a promising biomarker of tissue CD8 levels suitable for clinical evaluation in cancer patients eligible for immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. de Vries EG. ImmunoPET with an anti-CD8 imaging agent. www.clinicaltrials.gov; July 23, 2019. p. NCT04029181.

  2. Farhood B, Najafi M, Mortezaee K. CD8+ cytotoxic T lymphocytes in cancer immunotherapy: a review. J Cell Physiol. 2019;234:8509–21. https://doi.org/10.1002/jcp.27782.

  3. Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C, Fridman WH. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene. 2010;29:1093–102. https://doi.org/10.1038/onc.2009.416.

    Article  CAS  Google Scholar 

  4. Seo AN, Lee HJ, Kim EJ, Kim HJ, Jang MH, Lee HE, et al. Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer. 2013;109:2705–13. https://doi.org/10.1038/bjc.2013.634.

  5. Santoiemma PP, Powell DJ. Tumor infiltrating lymphocytes in ovarian cancer. Cancer Biol Ther. 2015;16:807–20. https://doi.org/10.1080/15384047.2015.1040960.

    Article  CAS  Google Scholar 

  6. Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515:568–71. https://doi.org/10.1038/nature13954.

    Article  CAS  Google Scholar 

  7. Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017;170:1109-19.e10. https://doi.org/10.1016/j.cell.2017.08.027.

    Article  CAS  Google Scholar 

  8. Edwards J, Wilmott JS, Madore J, Gide TN, Quek C, Tasker A, et al. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naive melanoma patients and expand significantly during anti-PD-1 treatment. Clin Cancer Res. 2018;24:3036–45. https://doi.org/10.1158/1078-0432.CCR-17-2257.

  9. Ledys F, Klopfenstein Q, Truntzer C, Arnould L, Vincent J, Bengrine L, et al. RAS status and neoadjuvant chemotherapy impact CD8+ cells and tumor HLA class I expression in liver metastatic colorectal cancer. J Immunother Cancer. 2018;6:123. https://doi.org/10.1186/s40425-018-0438-3.

  10. Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, et al. Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med. 2018;24:1852–8. https://doi.org/10.1038/s41591-018-0255-8.

    Article  CAS  Google Scholar 

  11. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med. 2012;366:883–92. https://doi.org/10.1056/NEJMoa1113205.

    Article  CAS  Google Scholar 

  12. Shipitsin M, Small C, Choudhury S, Giladi E, Friedlander S, Nardone J, et al. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. Br J Cancer. 2014;111:1201–12. https://doi.org/10.1038/bjc.2014.396.

    Article  CAS  Google Scholar 

  13. Roitman PD, Farfalli GL, Ayerza MA, Múscolo DL, Milano FE, Aponte-Tinao LA. Is needle biopsy clinically useful in preoperative grading of central chondrosarcoma of the pelvis and long bones? Clin Orthop Relat Res. 2017;475:808–14. https://doi.org/10.1007/s11999-016-4738-y.

    Article  Google Scholar 

  14. Yamashita K, Iwatsuki M, Harada K, Koga Y, Kiyozumi Y, Eto K, et al. Can PD-L1 expression evaluated by biopsy sample accurately reflect its expression in the whole tumour in gastric cancer? Br J Cancer. 2019;121:278–80. https://doi.org/10.1038/s41416-019-0515-5.

    Article  CAS  Google Scholar 

  15. van Dongen GA, Visser GW, Lub-de Hooge MN, de Vries EG, Perk LR. Immuno-PET: a navigator in monoclonal antibody development and applications. Oncologist. 2007;12:1379–89. https://doi.org/10.1634/theoncologist.12-12-1379.

    Article  CAS  Google Scholar 

  16. Gebhart G, Lamberts LE, Wimana Z, Garcia C, Emonts P, Ameye L, et al. Molecular imaging as a tool to investigate heterogeneity of advanced HER2-positive breast cancer and to predict patient outcome under trastuzumab emtansine (T-DM1): the ZEPHIR trial. Ann Oncol. 2016;27:619–24. https://doi.org/10.1093/annonc/mdv577.

    Article  CAS  Google Scholar 

  17. O’Donoghue JA, Danila DC, Pandit-Taskar N, Beylergil V, Cheal SM, Fleming SE, et al. Pharmacokinetics and biodistribution of a [89Zr]Zr-DFO-MSTP2109A anti-STEAP1 antibody in metastatic castration-resistant prostate cancer patients. Mol Pharm. 2019;16:3083–90. https://doi.org/10.1021/acs.molpharmaceut.9b00326.

    Article  CAS  Google Scholar 

  18. Pandit-Taskar N, Postow MA, Hellmann MD, Harding JJ, Barker CA, O’Donoghue JA, et al. First-in-Humans Imaging with 89Zr-Df-IAB22M2C Anti-CD8 minibody in patients with solid malignancies: preliminary pharmacokinetics, biodistribution, and lesion targeting. J Nucl Med. 2020;61:512–9. https://doi.org/10.2967/jnumed.119.229781.

    Article  CAS  Google Scholar 

  19. Rashidian M, LaFleur MW, Verschoor VL, Dongre A, Zhang Y, Nguyen TH, et al. Immuno-PET identifies the myeloid compartment as a key contributor to the outcome of the antitumor response under PD-1 blockade. Proc Natl Acad Sci U S A. 2019;116:16971–80. https://doi.org/10.1073/pnas.1905005116.

    Article  CAS  Google Scholar 

  20. St Clair EW. The calm after the cytokine storm: lessons from the TGN1412 trial. J Clin Invest. 2008;118:1344–7. https://doi.org/10.1172/JCI35382.

    Article  CAS  Google Scholar 

  21. Clement M, Ladell K, Ekeruche-Makinde J, Miles JJ, Edwards ES, Dolton G, et al. Anti-CD8 antibodies can trigger CD8+ T cell effector function in the absence of TCR engagement and improve peptide-MHCI tetramer staining. J Immunol. 2011;187:654–63. https://doi.org/10.4049/jimmunol.1003941.

  22. Schlothauer T, Herter S, Koller CF, Grau-Richards S, Steinhart V, Spick C, et al. Novel human IgG1 and IgG4 Fc-engineered antibodies with completely abolished immune effector functions. Protein Eng Des Sel. 2016;29:457–66. https://doi.org/10.1093/protein/gzw040.

    Article  CAS  Google Scholar 

  23. Pisaneschi F, Viola NT. Development and validation of a PET/SPECT radiopharmaceutical in oncology. Mol Imaging Biol. 2022;24:1–7. https://doi.org/10.1007/s11307-021-01645-6.

    Article  CAS  Google Scholar 

  24. Gill H, Seipert R, Carroll VM, Gouasmat A, Yin J, Ogasawara A, et al. The production, quality control, and characterization of ZED8, a CD8-specific 89Zr-labeled immuno-PET clinical imaging agent. AAPS J. 2020;22:22. https://doi.org/10.1208/s12248-019-0392-0.

    Article  CAS  Google Scholar 

  25. Kist de Ruijter L, van de Donk PP, Hooiveld-Noeken JS, Giesen D, Ungewickell A, Fine BM, et al. 89 ZED88082A PET imaging to visualize CD8 + T cells in patients with cancer treated with immune checkpoint inhibitor. Cancer Research. 2021;81. https://doi.org/10.1158/1538-7445.AM2021-LB037.

  26. Merchant M, Ma X, Maun HR, Zheng Z, Peng J, Romero M, et al. Monovalent antibody design and mechanism of action of onartuzumab, a MET antagonist with anti-tumor activity as a therapeutic agent. Proc Natl Acad Sci U S A. 2013;110:E2987–96. https://doi.org/10.1073/pnas.1302725110.

    Article  Google Scholar 

  27. Ridgway JB, Presta LG, Carter P. “Knobs-into-holes” engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. 1996;9:617–21. https://doi.org/10.1093/protein/9.7.617.

    Article  CAS  Google Scholar 

  28. Spiess C, Merchant M, Huang A, Zheng Z, Yang NY, Peng J, et al. Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies. Nat Biotechnol. 2013;31:753–8. https://doi.org/10.1038/nbt.2621.

    Article  CAS  Google Scholar 

  29. Wang X, Phan MM, Li J, Gill H, Williams S, Gupta N, et al. Molecular interaction characterization strategies for the development of new biotherapeutic antibody modalities. Antibodies (Basel). 2020;9. https://doi.org/10.3390/antib9020007.

  30. Brey EM, Lalani Z, Johnston C, Wong M, McIntire LV, Duke PJ, et al. Automated selection of DAB-labeled tissue for immunohistochemical quantification. J Histochem Cytochem. 2003;51:575–84. https://doi.org/10.1177/002215540305100503.

    Article  CAS  Google Scholar 

  31. Qi J, Leahy RM. Resolution and noise properties of MAP reconstruction for fully 3-D PET. IEEE Trans Med Imaging. 2000;19:493–506. https://doi.org/10.1109/42.870259.

    Article  CAS  Google Scholar 

  32. Hong I, Burbar Z, Michel CJ, Leahy R. Ultrafast preconditioned conjugate gradient OSEM algorithm for fully 3D PET reconstruction. IEEE Nuclear Science Symposium. 2010. https://doi.org/10.1109/NSSMIC.2010.5874221

  33. Stabin MG, Sparks RB, Crowe E. OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. J Nucl Med. 2005;46:1023–7.

    Google Scholar 

  34. Drevon-Gaillot E, Perron-Lepage MF, Clément C, Burnett R. A review of background findings in cynomolgus monkeys (Macaca fascicularis) from three different geographical origins. Exp Toxicol Pathol. 2006;58:77–88. https://doi.org/10.1016/j.etp.2006.07.003.

    Article  CAS  Google Scholar 

  35. Gaschen L, Menninger K, Schuurman HJ. Ultrasonography of the normal kidney in the cynomolgus monkey (Macaca fascicularis): morphologic and Doppler findings. J Med Primatol. 2000;29:76–84. https://doi.org/10.1034/j.1600-0684.2000.290205.x.

    Article  CAS  Google Scholar 

  36. Wang R, Natarajan K, Margulies DH. Structural basis of the CD8 alpha beta/MHC class I interaction: focused recognition orients CD8 beta to a T cell proximal position. J Immunol. 2009;183:2554–64. https://doi.org/10.4049/jimmunol.0901276.

    Article  CAS  Google Scholar 

  37. Surati M, Patel P, Peterson A, Salgia R. Role of MetMAb (OA-5D5) in c-MET active lung malignancies. Expert Opin Biol Ther. 2011;11:1655–62. https://doi.org/10.1517/14712598.2011.626762.

    Article  CAS  Google Scholar 

  38. Salgia R, Patel P, Bothos J, Yu W, Eppler S, Hegde P, et al. Phase I dose-escalation study of onartuzumab as a single agent and in combination with bevacizumab in patients with advanced solid malignancies. Clin Cancer Res. 2014;20:1666–75. https://doi.org/10.1158/1078-0432.CCR-13-2070.

    Article  CAS  Google Scholar 

  39. Jagoda EM, Lang L, Bhadrasetty V, Histed S, Williams M, Kramer-Marek G, et al. Immuno-PET of the hepatocyte growth factor receptor Met using the 1-armed antibody onartuzumab. J Nucl Med. 2012;53:1592–600. https://doi.org/10.2967/jnumed.111.102293.

    Article  CAS  Google Scholar 

  40. Thurber GM, Schmidt MM, Wittrup KD. Factors determining antibody distribution in tumors. Trends Pharmacol Sci. 2008;29:57–61. https://doi.org/10.1016/j.tips.2007.11.004.

    Article  CAS  Google Scholar 

  41. Xiang H, Bender BC, Reyes AE, Merchant M, Jumbe NL, Romero M, et al. Onartuzumab (MetMAb): using nonclinical pharmacokinetic and concentration-effect data to support clinical development. Clin Cancer Res. 2013;19:5068–78. https://doi.org/10.1158/1078-0432.CCR-13-0260.

    Article  CAS  Google Scholar 

  42. Deng R, Iyer S, Theil FP, Mortensen DL, Fielder PJ, Prabhu S. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: what have we learned? MAbs. 2011;3:61–6. https://doi.org/10.4161/mabs.3.1.13799.

    Article  Google Scholar 

  43. Rafidi H, Estevez A, Ferl GZ, Mandikian D, Stainton S, Sermeño L, et al. Imaging reveals importance of shape and flexibility for glomerular filtration of biologics. Mol Cancer Ther. 2021;20:2008–15. https://doi.org/10.1158/1535-7163.MCT-21-0116.

    Article  CAS  Google Scholar 

  44. Abou DS, Ku T, Smith-Jones PM. In vivo biodistribution and accumulation of 89Zr in mice. Nucl Med Biol. 2011;38:675–81. https://doi.org/10.1016/j.nucmedbio.2010.12.011.

    Article  CAS  Google Scholar 

  45. Carrasquillo JA, Fine BM, Pandit-Taskar N, Larson SM, Fleming SE, Fox JJ, et al. Imaging patients with metastatic castration-resistant prostate cancer using 89Zr-DFO-MSTP2109A anti-STEAP1 antibody. J Nucl Med. 2019;60:1517–23. https://doi.org/10.2967/jnumed.118.222844.

    Article  CAS  Google Scholar 

  46. Berg E, Gill H, Marik J, Ogasawara A, Williams S, van Dongen G, et al. Total-body PET and highly stable chelators together enable meaningful. J Nucl Med. 2020;61:453–60. https://doi.org/10.2967/jnumed.119.230961.

    Article  CAS  Google Scholar 

  47. Chomet M, Schreurs M, Bolijn MJ, Verlaan M, Beaino W, Brown K, et al. Head-to-head comparison of DFO* and DFO chelators: selection of the best candidate for clinical. Eur J Nucl Med Mol Imaging. 2021;48:694–707. https://doi.org/10.1007/s00259-020-05002-7.

    Article  CAS  Google Scholar 

  48. Vugts DJ, Klaver C, Sewing C, Poot AJ, Adamzek K, Huegli S, et al. Comparison of the octadentate bifunctional chelator DFO*-pPhe-NCS and the clinically used hexadentate bifunctional chelator DFO-pPhe-NCS for 89Zr-immuno-PET. Eur J Nucl Med Mol Imaging. 2017;44:286–95. https://doi.org/10.1007/s00259-016-3499-x.

    Article  CAS  Google Scholar 

  49. Patra M, Bauman A, Mari C, Fischer CA, Blacque O, Häussinger D, et al. An octadentate bifunctional chelating agent for the development of stable zirconium-89 based molecular imaging probes. Chem Commun (Camb). 2014;50:11523–5. https://doi.org/10.1039/c4cc05558f.

    Article  CAS  Google Scholar 

  50. Laforest R, Lapi SE, Oyama R, Bose R, Tabchy A, Marquez-Nostra BV, et al. [89Zr]Trastuzumab : evaluation of radiation dosimetry, safety, and optimal imaging parameters in women with HER2-positive breast cancer. Mol Imaging Biol. 2016;18:952–9. https://doi.org/10.1007/s11307-016-0951-z.

    Article  CAS  Google Scholar 

  51. Makris NE, Boellaard R, van Lingen A, Lammertsma AA, van Dongen GA, Verheul HM, et al. PET/CT-derived whole-body and bone marrow dosimetry of 89Zr-cetuximab. J Nucl Med. 2015;56:249–54. https://doi.org/10.2967/jnumed.114.147819.

    Article  CAS  Google Scholar 

  52. Gaykema SB, Brouwers AH, Lub-de Hooge MN, Pleijhuis RG, Timmer-Bosscha H, Pot L, et al. 89Zr-bevacizumab PET imaging in primary breast cancer. J Nucl Med. 2013;54:1014–8. https://doi.org/10.2967/jnumed.112.117218.

    Article  CAS  Google Scholar 

  53. Farwell MD, Gamache RF, Babazada H, Hellmann MD, Harding JJ, Korn R, et al. CD8-targeted PET imaging of tumor-infiltrating T Cells in patients with cancer: a phase I first-in-humans study of 89Zr-Df-IAB22M2C, a radiolabeled anti-CD8 minibody. J Nucl Med. 2022;63:720–6. https://doi.org/10.2967/jnumed.121.262485.

    Article  CAS  Google Scholar 

  54. Christian PE, Williams SP, Burrell L, Castaneda P, Albiani J, Sandella N, et al. Optimization of 89Zr PET imaging for improved multisite quantification and lesion detection using an anthropomorphic phantom. J Nucl Med Technol. 2020;48:54–7. https://doi.org/10.2967/jnmt.119.230474.

    Article  Google Scholar 

  55. Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med. 2019;60:299–303. https://doi.org/10.2967/jnumed.119.226498.

    Article  CAS  Google Scholar 

  56. Omidvari N, Jones T, Price P, Sen F, Shacklett B, Cohen S, et al. Total-body imaging of CD8+ T cells in patients recovering from COVID-19. A pilot study using uEXPLORER total-body PET. Journal of Nuclear Medicine. 2022;63.

  57. Sriraman SK, Davies CW, Gill H, Kiefer JR, Yin J, Ogasawara A, et al. Development of an 18F-labeled anti-human CD8 VHH for same-day immunoPET imaging. https://doi.org/10.1007/s00259-022-05998-0.

Download references

Acknowledgements

The authors would like to thank present and former Genentech colleagues Alexander Vanderbilt, Mark Dennis, Yvonne Chen, Diego Ellerman, Phil Hass, Jeremy Good, Maciej Paluch, Pat Mckay, Matthew Albert, Jane Grogan, Rodney Prell, and Jennifer O’Mahoney for their contributions to these studies of ZED8.

X-ray diffraction data were collected at SSRL beamline 12–2. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research, and by the National Institutes of Health, National Institute of General Medical Sciences (P30GM133894). The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of NIGMS or NIH. The coordinates and amplitudes for the RED8 Fab:CD8ɑ complex structure have been deposited into the Protein Databank with accession code: 7UVF.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design, execution, or analysis of one or more parts of the study, or critically reviewed manuscript drafts, and all reviewed the final manuscript.

Corresponding author

Correspondence to Simon-Peter Williams.

Ethics declarations

Competing interests

All authors are present or former employees and potentially stockholders of the Roche group that includes Genentech, Inc. to which any intellectual property rights in this work have been assigned.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preclinical Imaging.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 143753 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogasawara, A., Kiefer, J.R., Gill, H. et al. Preclinical development of ZED8, an 89Zr immuno-PET reagent for monitoring tumor CD8 status in patients undergoing cancer immunotherapy. Eur J Nucl Med Mol Imaging 50, 287–301 (2023). https://doi.org/10.1007/s00259-022-05968-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05968-6

Keywords

Navigation