Skip to main content
Log in

Molecular fluorophores for in vivo bioimaging in the second near-infrared window

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This systematic review aims to summarize the current developments of fluorescence and chemi/bioluminescence imaging based on the molecular fluorophores for in vivo imaging in the second near-infrared window.

Methods and results

By investigating most of the relevant references on the web of science and some journals, this review firstly begins with an overview of the background of fluorescence and chemi/bioluminescence imaging. Secondly, the chemical and optical properties of NIR-II dyes are discussed, such as water solubility, chemostability and photo-stability, and brightness. Thirdly, the bioimaging based on NIR-II fluorescence emission is outlined, including the in vivo imaging of polymethine dyes, donor − acceptor − donor (D − A − D) chromophores, and lanthanide complexes. Fourthly, we demonstrate the chemi/bioluminescence in vivo imaging in the second near-infrared window. Fifthly, the clinical application and translation of near-infrared fluorescence imaging are presented. Finally, the current challenges, feasible strategies and potential prospects of the fluorophores and in vivo bioimaging are discussed.

Conclusions

Based on the above literature research on the applications of molecular fluorescent and chemi/bioluminescent probes in the second near-infrared window in recent years, this review weighs the advantages and disadvantages of fluorescence and chemi/bioluminescence imaging, and NIR-II fluorophores based on polymethine dyes, D − A − D chromophores, and lanthanide complexes. Besides, this review also provides a very important guidance for expanding the imaging applications of molecular fluorophores in the second near-infrared window.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

reproduced with permission from Ding et al. [74], Li et al. [34], respectively. (b) The images have been reproduced with permission from Li et al. [35], Cosco et al. [56], respectively. (c) The images have been reproduced with permission from Wang et al. [71], Lei et al. [76], respectively. (d) The images have been reproduced with permission from Sun et al. [77], Chen et al. [73], respectively

Fig. 6
Fig. 7
Fig. 8

reproduced with permission from Antaris et al. [5], Fang et al. [85], Yang et al. [61], Ma et al. [87], respectively. (b) The images have been reproduced with permission from Zhang et al. [81], Lin et al. [84], Yang et al. [54], Fang et al. [85], respectively. (c) The image has been reproduced with permission from Antaris et al. [46]. (d) The images have been reproduced with permission from Antaris et al. [5], Antaris et al. [46], respectively

Fig. 9

reproduced with permission from Yang et al. [18]. (b) The molecular structure, UV–Vis absorption and fluorescence spectrum, and NIR-II imaging of Nd-DTPA. The images have been reproduced with permission from Li et al. [19]. (c) The molecular structure, UV–Vis absorption, fluorescence spectrum, and in vivo imaging of EB766. The images have been reproduced with permission from Wang et al. [20]

Fig. 10

reproduced with permission from Huang et al. [97]. (b) The structure, composition, chemiluminescence mechanism, and CL/FL image of NIR-II CLS. The images have been reproduced with permission from Yang et al. [24]

Fig. 11

reproduced with permission from Wang et al. [25]

Fig. 12

reproduced with permission from van Dam et al. [103] (b) The structure of OTL38, fluorescence measurements at baseline (and after receiving a dose of OTL38 using the Artemis imaging system and intraoperative detection of ovarian cancer metastases using fluorescence-based imaging. The images have been reproduced with permission from Charlotte et al. [102]

Fig. 13

Similar content being viewed by others

References

  1. Hong GS, Antaris AL, Dai HJ. Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng. 2017;1:0010.

    Article  CAS  Google Scholar 

  2. Naczynski DJ, Tan MC, Zevon M, Wall B, Kohl J, Kulesa A, et al. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nat Commun. 2013;4:2199.

    Article  CAS  PubMed  Google Scholar 

  3. Fan Y, Zhang F. A new generation of NIR-II probes: lanthanide-based nanocrystals for bioimaging and biosensing. Adv Opt Mater. 2019;7:1801417.

    Article  CAS  Google Scholar 

  4. Wan H, Yue JY, Zhu SJ, Uno T, Zhang XD, Yang QL, et al. A bright organic NIR-II nanofluorophore for three-dimensional imaging into biological tissues. Nat Commun. 2018;9:1171.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Antaris AL, Chen H, Cheng K, Sun Y, Hong GS, Qu CR, et al. A small-molecule dye for NIR-II imaging. Nat Mater. 2016;15:235–42.

    Article  CAS  PubMed  Google Scholar 

  6. Hu ZH, Fang C, Li B, Zhang ZY, Cao CG, Cai MS, et al. First-in-human liver-tumour surgery guided by multispectral fluorescence imaging in the visible and near-infrared-I/II windows. Nat Biomed Eng. 2020;4:259–71.

    Article  PubMed  Google Scholar 

  7. Wang PY, Fan Y, Lu LF, Liu L, Fan LL, Zhao MY, et al. NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer. Nat Commun. 2018;9:2898.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Wang R, Zhou L, Wang WX, Li XM, Zhang F. In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat Commun. 2017;8:17402.

    Google Scholar 

  9. Yang JY, He SQ, Hu ZH, Zhang ZY, Cao CG, Cheng Z, et al. In vivo multifunctional fluorescence imaging using liposome-coated lanthanide nanoparticles in near-infrared-II/IIa/IIb windows. Nano Today. 2021;38:101120.

    Article  CAS  Google Scholar 

  10. Ghosh D, Bagley AF, Na YJ, Birrer MJ, Bhatia SN, Belcher AM. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes. Proc Natl Acad Sci U S A. 2014;111:13948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wong MH, Giraldo JP, Kwak S-Y, Koman VB, Sinclair R, Lew TTS, et al. Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nat Mater. 2017;16:264–72.

    Article  CAS  PubMed  Google Scholar 

  12. Iverson NM, Barone PW, Shandell M, Trudel LJ, Sen S, Sen F, et al. In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes. Nat Nanotechnol. 2013;8:873–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chang BS, Li DF, Ren Y, Qu CR, Shi XJ, Liu RQ, et al. A phosphorescent probe for in vivo imaging in the second near-infrared window. Nat Biomed Eng. 2021. https://doi.org/10.1038/s41551-021-00773-2.

    Article  PubMed  Google Scholar 

  14. Riedemann L, Bartelt A, Jaworski FB, Carr JA, Rowlands CJ. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng. 2017;1:1–11.

    Google Scholar 

  15. Park JH, Guo L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater. 2009;8:331–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bruns OT, Bischof TS, Harris DK, Franke D, Shi YX, Riedemann L, et al. Next-generation in vivo optical imaging with short-wave infrared quantum dots. Nat Biomed Eng. 2017;1:0056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang M, Li H, Huang B, Chen S, Cui R, Sun Z-J, et al. An ultra-stable, oxygen-supply nanoprobe emitting in Near-Infrared-II window to guide and enhance radiotherapy by promoting anti-tumor immunity. Adv Healthcare Mater. 2021;10:2100090.

    Article  CAS  Google Scholar 

  18. Yang YL, Wang PY, Lu LF, Fan Y, Sun CX, Fan LL, et al. Small molecule lanthanide complexes probe for second near-infrared window bioimaging. Anal Chem. 2018;90:7946–52.

    Article  CAS  PubMed  Google Scholar 

  19. Li YB, Li XL, Xue ZL, Jiang MY, Zeng SJ, Hao JH, et al. Second near-infrared emissive lanthanide complex for fast renal-clearable in vivo optical bioimaging and tiny tumor detection. Biomaterials. 2018;169:35–44.

    Article  CAS  PubMed  Google Scholar 

  20. Wang T, Wang SF, Liu ZY, He ZY, Yu P, Zhao MY, et al. A hybrid erbium(III)–bacteriochlorin near-infrared probe for multiplexed biomedical imaging. Nat Mater. 2021. https://doi.org/10.1038/s41563-021-01063-7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yi RX, Das P, Lin FR, Shen BL, Yang ZG, Zhao YH, et al. Fluorescence enhancement of small squaraine dye and its two-photon excited fluorescence in long-term near-infrared I&II bioimaging. Opt Express. 2019;27:12360–72.

    Article  CAS  PubMed  Google Scholar 

  22. del Rosal B, Ortgies DH, Fernández N, Sanz-Rodríguez F, Jaque D, Rodríguez EM. Overcoming autofluorescence: long-lifetime infrared nanoparticles for time-gated in vivo imaging. Adv Mater. 2016;28:10188–93.

    Article  PubMed  CAS  Google Scholar 

  23. Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem Rev. 2010;110:2641–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yang YL, Wang SF, Lu LF, Zhang QS, Yu P, Fan Y, et al. NIR-II chemiluminescence molecular sensor for in vivo high-contrast inflammation imaging. Angew Chem Int Ed. 2020;59:18380–5.

    Article  CAS  Google Scholar 

  25. Lu LF, Li BH, Ding SW, Fan Y, Wang SF, Sun CX, et al. NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing. Nat Commun. 2020;11:4192.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hong GS, Diao S, Chang JL, Antaris AL, Chen CX, Zhang B, et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics. 2014;8:723–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Welsher K, Sherlock SP, Dai HJ. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci U S A. 2011;108:8943–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hong GS, Lee JC, Robinson JT, Raaz U, Xie LM, Huang NF, et al. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. Nat Med. 2012;18:1841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Del Bonis-O’Donnell JT, Page RH, Beyene AG, Tindall EG, McFarlane IR, Landry MP. Dual near-infrared two-photon microscopy for deep-tissue dopamine nanosensor imaging. Adv Funct Mater. 2017;27:1702112.

    Article  CAS  Google Scholar 

  30. Zhu SJ, Herraiz S, Yue JY, Zhang MX, Wan H, Yang QL, et al. 3D NIR-II molecular imaging distinguishes targeted organs with high-performance NIR-II bioconjugates. Adv Mater. 2018;30:1705799.

    Article  CAS  Google Scholar 

  31. Fan Y, Wang PY, Lu YQ, Wang R, Zhou L, Zheng XL, et al. Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging. Nat Nanotechnol. 2018;13:941–6.

    Article  CAS  PubMed  Google Scholar 

  32. Wang FF, Wan H, Ma ZR, Zhong YT, Sun QC, Tian Y, et al. Light-sheet microscopy in the near-infrared II window. Nat Methods. 2019;16:545–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Suo YK, Wu FX, Xu PF, Shi H, Wang TZ, Liu HG, et al. NIR-II fluorescence endoscopy for targeted imaging of colorectal cancer. Adv Healthcare Mater. 2019;8:1900974.

    Article  CAS  Google Scholar 

  34. Li BH, Lu LF, Zhao MY, Lei ZH, Zhang F. An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging. Angew Chem In Ed. 2018;57:7483–7.

    Article  CAS  Google Scholar 

  35. Li BH, Zhao MY, Feng LS, Dou CR, Ding SW, Zhou G, et al. Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat Commun. 2020;11:3102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. He Y, Wang SF, Yu P, Yan K, Ming J, Yao CZ, et al. NIR-II cell endocytosis-activated fluorescent probes for in vivo high-contrast bioimaging diagnostics. Chem Sci. 2021. https://doi.org/10.1039/D1SC02763H.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhao MY, Wang JB, Lei ZH, Lu LF, Wang SF, Zhang HX, et al. NIR-II pH sensor with FRET adjustable transition point for in situ dynamic tumor microenvironment visualization. Angew Chem Int Ed. 2021;60:5091–5.

    Article  CAS  Google Scholar 

  38. Qian G, Dai B, Luo M, Yu D, Zhan J, Zhang Z, et al. Band gap tunable, donor-acceptor-donor charge-transfer heteroquinoid-based chromophores: near infrared photoluminescence and electroluminescence. Chem Mater. 2008;20:6208–16.

    Article  CAS  Google Scholar 

  39. Luo X, Li J, Zhao J, Gu LY, Qian XH, Yang YJ. A general approach to the design of high-performance near-infrared (NIR) D-π-A type fluorescent dyes. Chin Chem Lett. 2019;30:839–46.

    Article  CAS  Google Scholar 

  40. D’Aandrade BW, Datta S, Forrest SR, Djurovich P, Polikarpov E, Thompson ME. Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Org Electron. 2005;6:11–20.

    Article  CAS  Google Scholar 

  41. Tian R, Ma HL, Zhu SJ, Lau J, Ma R, Liu YJ, et al. Multiplexed NIR-II probes for lymph node-invaded cancer detection and imaging-guided surgery. Adv Mater. 2020;32:1907365.

    Article  CAS  Google Scholar 

  42. Ma HL, Liu CC, Hu ZB, Yu PP, Zhu XF, Ma R, et al. Propylenedioxy thiophene donor to achieve NIR-II molecular fluorophores with enhanced brightness. Chem Mater. 2020;32:2061–9.

    Article  CAS  Google Scholar 

  43. Chitgupi U, Nyayapathi N, Kim J, Wang DP, Sun BY, Li CN, et al. Surfactant-stripped micelles for NIR-II photoacoustic imaging through 12 cm of breast tissue and whole human breasts. Adv Mater. 2019;31:1902279.

    Article  CAS  Google Scholar 

  44. Tang CC, Song CH, Wei Z, Liang C, Ran JC, Cai Y, et al. Polycyclic naphthalenediimide-based nanoparticles for NIR-II fluorescence imaging guided phototherapy. Sci Chi Chem. 2020;63:946–56.

    Article  CAS  Google Scholar 

  45. Hoshi R, Suzuki K, Hasebe N, Yoshihara T, Tobita S. Absolute quantum yield measurements of near-infrared emission with correction for solvent absorption. Anal Chem. 2020;92:607–11.

    Article  CAS  PubMed  Google Scholar 

  46. Antaris AL, Chen H, Diao S, Ma ZR, Zhang Z, Zhu SJ, et al. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging. Nat Commun. 2017;8:15269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Widengren J, Schwille P. Characterization of photoinduced isomerization and back-isomerization of the cyanine dye Cy5 by fluorescence correlation spectroscopy. J Phys Chem A. 2000;104:6416–28.

    Article  CAS  Google Scholar 

  48. Holzer W, Mauerer M, Penzkofer A, Szeimies R-M, Abels C, Landthaler M, et al. Photostability and thermal stability of indocyanine green. J Photochem Photobiol B: Biol. 1998;47:155–64.

    Article  CAS  Google Scholar 

  49. Renikuntla BR, Rose HC, Eldo J, Waggoner AS, Armitage BA. Improved photostability and fluorescence properties through polyfluorination of a cyanine dye. Org Lett. 2004;6:909–12.

    Article  CAS  PubMed  Google Scholar 

  50. Redy-Keisar O, Huth K, Vogel U, Lepenies B, Seeberger PH, Haag R, et al. Enhancement of fluorescent properties of near-infrared dyes using clickable oligoglycerol dendrons. Org Biomol Chem. 2015;13:4727–32.

    Article  CAS  PubMed  Google Scholar 

  51. Altman RB, Terry DS, Zhou Z, Zheng QS, Geggier P, Kolster RA, et al. Cyanine fluorophore derivatives with enhanced photostability. Nat Methods. 2012;9:68–71.

    Article  CAS  Google Scholar 

  52. Zhu SJ, Tian R, Antaris AL, Chen XY, Dai HJ. Near-Infrared-II molecular dyes for cancer imaging and surgery. Adv Mater. 2019;31:1900321.

    Article  CAS  Google Scholar 

  53. Tian R, Ma HL, Yang QL, Wan H, Zhu SJ, Chandra S, et al. Rational design of a super-contrast NIR-II fluorophore affords high-performance NIR-II molecular imaging guided microsurgery. Chem Sci. 2019;10:326–32.

    Article  CAS  PubMed  Google Scholar 

  54. Yang QL, Hu ZB, Zhu SJ, Ma R, Ma HL, Ma ZR, et al. Donor engineering for NIR-II molecular fluorophores with enhanced fluorescent performance. J Am Chem Soc. 2018;140:1715–24.

    Article  CAS  PubMed  Google Scholar 

  55. Tao ZM, Hong GS, Shinji C, Chen CX, Diao S, Antaris AL, et al. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew Chem Int Ed. 2013;52:13002–6.

    Article  CAS  Google Scholar 

  56. Cosco ED, Caram JR, Bruns OT, Franke D, Day RA, Farr EP, et al. Flavylium polymethine fluorophores for imaging in the near- and shortwave infrared. Angew Chem Int Ed. 2017;56:13126–9.

    Article  CAS  Google Scholar 

  57. Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, et al. Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci U S A. 2018;115:4465–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tian R, Zeng Q, Zhu SJ, Lau J, Chandra S, Ertsey R, et al. Albumin-chaperoned cyanine dye yields superbright NIR-II fluorophore with enhanced pharmacokinetics. Sci Adv. 2019;5:eaaw0672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Starosolski Z, Bhavane R, Ghaghada KB, Vasudevan SA, Kaay A, Annapragada A. Indocyanine green fluorescence in second near-infrared (NIR-II) window. PLoS One. 2017;12:e0187563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhu SJ, Hu ZB, Tian R, Yung BC, Yang QL, Zhao S, et al. Repurposing cyanine NIR-I dyes accelerates clinical translation of near-infrared-II (NIR-II) bioimaging. Adv Mater. 2018;30:1802546.

    Article  CAS  Google Scholar 

  61. Yang QL, Ma RZ, Wang HS, Zhou B, Zhu SJ, Zhong YT, et al. Rational design of molecular fluorophores for biological imaging in the NIR-II window. Adv Mater. 2017;29:1605497.

    Article  CAS  Google Scholar 

  62. Sun W, Guo SG, Hu C, Fan JL, Peng XJ. Recent development of chemosensors based on cyanine platforms. Chem Rev. 2016;116:7768–817.

    Article  CAS  PubMed  Google Scholar 

  63. Bricks JL, Kachkovskii AD, Slominskii YL, Gerasov AO, Popov SV. Molecular design of near infrared polymethine dyes: A review. Dyes Pigm. 2015;121:238–55.

    Article  CAS  Google Scholar 

  64. Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanines during the 1990s: A review. Chem Rev. 2000;100:1973–2012.

    Article  CAS  PubMed  Google Scholar 

  65. Padilha LA, Webster S, Przhonska OV, Hu H, Peceli D, Rosch JL, et al. Nonlinear absorption in a series of Donor–π–Acceptor cyanines with different conjugation lengths. J Mater Chem. 2009;19:7503–13.

    Article  CAS  Google Scholar 

  66. König W. Über den Begriff der polymethinfarbstoffe und eine davon ableitbare allgemeine Farbstoff-Formel als Grundlage einer neuen Systematik der Farbenchemie. J Prakt Chem. 1926;112:1–36.

    Article  Google Scholar 

  67. Brooker LG. Absorption and resonance in dyes. Rev Mod Phys. 1942;4:275–93.

    Article  Google Scholar 

  68. Gutzler R, Perepichka DF. π-Electron conjugation in two dimensions. J Am Chem Soc. 2013;135:16585–94.

    Article  CAS  PubMed  Google Scholar 

  69. Cai ZC, Zhu L, Wang MQ, Roe AW, Xi W, Qian J. NIR-II fluorescence microscopic imaging of cortical vasculature in non-human primates. Theranostics. 2020;10:4265–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Meng XQ, Zhang JL, Sun ZH, Zhou LH, Deng GJ, Li SP, et al. Hypoxia-triggered single molecule probe for high-contrast NIR II/PA tumor imaging and robust photothermal therapy. Theranostics. 2018;8:6025–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang SF, Fan Y, Li DD, Sun CX, Lei ZH, Lu LF, et al. Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing. Nat Commun. 2019;10:1058.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Feng WQ, Zhang YY, Li Z, Zhai SY, Lv WJ, Liu ZH. Lighting up NIR-II fluorescence in vivo: an activatable probe for noninvasive hydroxyl radical imaging. Anal Chem. 2019;91:15757–62.

    Article  CAS  PubMed  Google Scholar 

  73. Chen W, Cheng C-A, Cosco ED, Ramakrishnan S, Lingg JGP, Bruns OT, et al. Shortwave infrared imaging with J-aggregates stabilized in hollow mesoporous silica nanoparticles. J Am Chem Soc. 2019;141:12475–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ding BB, Xiao YL, Zhou H, Zhang X, Qu CR, Xu FC, et al. Polymethine thiopyrylium fluorophores with absorption beyond 1000 nm for biological imaging in the second near-infrared subwindow. J Med Chem. 2019;62:2049–59.

    Article  CAS  PubMed  Google Scholar 

  75. Semonin OE, Johnson JC, Luther JM, Midgett AG, Nozik AJ, Beard MC. Absolute photoluminescence quantum yields of IR-26 dye, PbS, and PbSe quantum dots. J Phys Chem Lett. 2010;1:2445–50.

    Article  CAS  Google Scholar 

  76. Lei ZH, Sun CX, Pei P, Wang SF, Li DD, Zhang X, et al. Stable, wavelength-tunable fluorescent dyes in the NIR-II region for in vivo high-contrast bioimaging and multiplexed biosensing. Angew Chem Int Ed. 2019;58:8166–71.

    Article  CAS  Google Scholar 

  77. Sun CX, Li BH, Zhao MY, Wang SF, Lei ZH, Lu LF, et al. J-Aggregates of cyanine dye for NIR-II in vivo dynamic vascular imaging beyond 1500 nm. J Am Chem Soc. 2019;141:19221–5.

    Article  CAS  PubMed  Google Scholar 

  78. Ono K, Tanaka S, Yamashita Y. Benzobis(thiadiazole)s containing hypervalent sulfur atoms: novel heterocycles with high electron affinity and short intermolecular contacts between heteroatoms. Angew Chem Int Ed. 1994;33:1977–9.

    Article  Google Scholar 

  79. Zhu SJ, Yang QL, Antaris AL, Yue JY, Ma ZR, et al. Molecular imaging of biological systems with a clickable dye in the broad 800- to 1,700-nm near-infrared window. Proc Natl Acad Sci U S A. 2017;114:962–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Li YY, Cai ZC, Liu SJ, Zhang HK, Wong STH, Lam JWY, et al. Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nat Commun. 2020;11:1255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhang X-D, Wang HS, Antaris AL, Li LL, Diao S, Ma R, et al. Traumatic brain injury imaging in the second near-infrared window with a molecular fluorophore. Adv Mater. 2016;28:6872–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sun Y, Ding F, Zhou ZX, Li CL, Pu MQ, Xu YL, et al. Rhomboidal Pt(II) metallacycle-based NIR-II theranostic nanoprobe for tumor diagnosis and image-guided therapy. Proc Natl Acad Sci U S A. 2019;116:1968–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun Y, Ding MM, Zeng XD, Xiao YL, Wu HP, Zhou H, et al. Novel bright-emission small-molecule NIR-II fluorophores for in vivo tumor imaging and image-guided surgery. Chem Sci. 2017;8:3489–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lin JC, Zeng XD, Xiao YL, Tang L, Nong JX, Liu YF, et al. Novel near-infrared II aggregation-induced emission dots for in vivo bioimaging. Chem Sci. 2019;10:1219–26.

    Article  CAS  PubMed  Google Scholar 

  85. Fang Y, Shang JZ, Liu DK, Shi W, Li XH, Ma HM. Design, synthesis, and application of a small molecular NIR-II fluorophore with maximal emission beyond 1200 nm. J Am Chem Soc. 2020;142:15271–5.

    Article  CAS  PubMed  Google Scholar 

  86. Sun Y, Qu CR, Chen H, He MM, Tang C, Shou KQ, et al. Novel benzo-bis(1,2,5-thiadiazole) fluorophores for in vivo NIR-II imaging of cancer. Chem Sci. 2016;7:6203–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ma ZR, Wan H, Wang WZ, Zhang XD, Uno T, Yang QL, et al. A theranostic agent for cancer therapy and imaging in the second near infrared window. Nano Res. 2019;12:273–9.

    Article  PubMed  CAS  Google Scholar 

  88. Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9:537–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang YR, Pang L, Ma C, Tu Q, Zhang R, Saeed E, et al. Small molecule-initiated light-activated semiconducting polymer dots: an integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells. Anal Chem. 2014;86:3092–9.

    Article  CAS  PubMed  Google Scholar 

  90. Lee ES, Deepagan VG, You DG, Jeon J, Yi G-R, Lee JY, Lee DS, et al. Nanoparticles based on quantum dots and a luminol derivative: implications for in vivo imaging of hydrogen peroxide by chemiluminescence resonance energy transfer. Chem Commun. 2016;52:4132–5.

    Article  CAS  Google Scholar 

  91. Li P, Liu L, Xiao HB, Zhang W, Wang LL, Tang B. A new polymer nanoprobe based on chemiluminescence resonance energy transfer for ultrasensitive imaging of intrinsic superoxide anion in mice. J Am Chem Soc. 2016;138:2893–6.

    Article  CAS  PubMed  Google Scholar 

  92. Niu JY, Fan JL, Wang X, Xiao YS, Xie XL, Jiao XY, et al. Simultaneous fluorescence and chemiluminescence turned on by aggregation-induced emission for real-time monitoring of endogenous superoxide anion in live cells. Anal Chem. 2017;89:7210–5.

    Article  CAS  PubMed  Google Scholar 

  93. Singh A, Seo YH, Lim C-K, Koh J, Jang W-D, Kwon IC, et al. Biolighted nanotorch capable of systemic self-delivery and diagnostic imaging. ACS Nano. 2015;9:9906–11.

    Article  CAS  PubMed  Google Scholar 

  94. Shuhendler AJ, Pu KY, Cui LN, Uetrecht JP, Rao JH. Real-time imaging of oxidative and nitrosative stress in the liver of live animals for drug-toxicity testing. Nat Biotechnol. 2014;32:373–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mao D, Wu WB, Ji SL, Chen C, Hu F, Kong DL, et al. Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer. Chem. 2017;3:991–1007.

    Article  CAS  Google Scholar 

  96. Zhen X, Zhang CW, Xie C, Miao QQ, Lim KL, Pu KY. Intraparticle energy level alignment of semiconducting polymer nanoparticles to amplify chemiluminescence for ultrasensitive in vivo imaging of reactive oxygen species. ACS Nano. 2016;10:6400–9.

    Article  CAS  PubMed  Google Scholar 

  97. Huang JG, Li JC, Lyu Y, Miao QQ, Pu KY. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat Mater. 2019;18:1133–43.

    Article  CAS  PubMed  Google Scholar 

  98. Cheng PH, Miao QQ, Li JC, Huang JG, Xie C, Pu KY. Unimolecular chemo-fluoro-luminescent reporter for crosstalk-free duplex imaging of hepatotoxicity. J Am Chem Soc. 2019;141:10581–4.

    Article  CAS  PubMed  Google Scholar 

  99. Kaskova ZM, Tsarkova AS, Yampolsky IV. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem Soc Rev. 2016;45:6048–77.

    Article  CAS  PubMed  Google Scholar 

  100. Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJH, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10:507–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Guo B, Feng Z, Hu DH, Xu SD, Middha E, Pan YT, et al. Precise deciphering of brain vasculatures and microscopic tumors with dual NIR-II fluorescence and photoacoustic imaging. Adv Mater. 2019;31:1902504.

    Article  CAS  Google Scholar 

  102. Hoogstins CES, Tummers QRJG, Gaarenstroom KN, de Kroon CD, Trimbos JBMZ, Bosse T, et al. A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: A translational study in healthy volunteers and patients with ovarian cancer. Clin Cancer Res. 2016;22:2929–38.

    Article  CAS  PubMed  Google Scholar 

  103. Van Dam GM, Themelis G, Crane LMA, Harlaar NJ, Pleijhuis RG, Kelder W, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med. 2011;17:1315–9.

    Article  PubMed  CAS  Google Scholar 

  104. Becker A, Hessenius C, Licha K, Ebert B, Sukowski U, Semmler W, et al. Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands. Nat Biotechnol. 2001;19:327–31.

    Article  CAS  PubMed  Google Scholar 

  105. Weissleder R, Tung C-H, Mahmood U, Bogdanov A Jr. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 1999;17:375–8.

    Article  CAS  PubMed  Google Scholar 

  106. Vinegoni C, Botnaru I, Aikawa E, Calfon MA, Iwamoto Y, Folco EJ, et al. Indocyanine green enables near-infrared fluorescence imaging of lipid-rich, inflamed atherosclerotic plaques. Sci Transl Med. 2011;3:84ra45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Whitley MJ, Cardona DM, Lazarides AL, Spasojevic I, Ferrer JM, Cahill J, et al. A mouse-human phase 1 co-clinical trial of a protease-activated fluorescent probe for imaging cancer. Sci Transl Med. 2016;8:320ra4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D Program of China (2017YFA0207303), National Natural Science Foundation of China (NSFC 22088101, 21725502, 51961145403, 21904023, 2210040480), and Research Program of Science and Technology Commission of Shanghai Municipality (20490710600, 20YF1402200, 20JC1411700, 19490713100, 20S31903700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - General

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Zhang, F. Molecular fluorophores for in vivo bioimaging in the second near-infrared window. Eur J Nucl Med Mol Imaging 49, 3226–3246 (2022). https://doi.org/10.1007/s00259-022-05688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05688-x

Keywords

Navigation