Skip to main content
Log in

The potential utility of [68 Ga]Ga-DOTA-FAPI-04 as a novel broad-spectrum oncological and non-oncological imaging agent—comparison with [18F]FDG

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to compare the detection performance of [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT in the patients with various oncological and non-oncological lesions.

Methods

A total of 123 patients underwent contemporaneous [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT were included in this prospective study. The maximum standard uptake value (SUVmax) was measured to compare oncological and non-oncological lesion uptake. The sensitivity, specificity, predictive values, and accuracy of [18F]FDG and [68 Ga]Ga-DOTA-FAPI-04 PET/CT for detecting primary, metastatic, and non-oncological lesions were calculated and compared to evaluate the detection efficacy.

Results

The study subjects consisted of 123 patients (69 men and 54 women; mean age 56.11 ± 11.94 years). Among the 102 patients with either newly diagnosed (82 patients) or previously treated solid tumor (20 patients), a total of 88 solid primary malignant tumors in 84/102 patients were detected. Two patients had two primary tumors each and 1 patient had three primary tumors. Among them, 58/102 and 43/102 patients had nodal (376 lesions) and distant metastases (406 lesions), respectively. Eight patients had hematological neoplasm. No malignant oncological diseases were detected in the remaining 13 patients. A total of 145 non-oncological lesions and benign tumors in 52/123 patients were detected incidentally. [68 Ga]Ga-DOTA-FAPI-04 PET/CT demonstrated a significantly higher uptake and detection rate for the primary (SUVmax 10.98 ± 5.83 vs. 8.36 ± 6.43, p < 0.001; sensitivity 97.67 vs. 84.89%; and accuracy 96.59 vs. 82.95%, X2 = 0.538, p = 0.021), nodal (SUVmax 10.50 ± 5.98 vs. 8.20 ± 6.29, p = 0.011; sensitivity 97.59 vs. 84.72%; and accuracy 97.34 vs. 84.31%, X2 = 2.067, p < 0.001), and distant metastatic lesions (SUVmax 9.64 ± 6.45 vs. 6.74 ± 4.83; p < 0.001; sensitivity 98.01 vs. 65.59%; and accuracy 97.04 vs. 65.51%, X2 = 4.897, p < 0.001) of solid tumor than did [18F]FDG PET/CT. [68 Ga]Ga-DOTA-FAPI-04 PET/CT demonstrated a lower activity (SUVmax: 6.84 ± 4.67 vs. 13.09 ± 7.29, p < 0.001) and detection rate (sensitivity 50.65 vs. 96.75%, and accuracy 51.28 vs. 95.51%, X2 = 5.166, p < 0.001) for multiple myeloma and lymphoma compared to [18F]FDG PET/CT. [68 Ga]Ga-DOTA-FAPI-04 and [18F]FDG PET/CT PET/CT demonstrated a comparative activity (SUVmax 6.40 ± 3.95 vs. 5.74 ± 15.78, p = 0.729) and detection efficacy (sensitivity 86.52 vs. 72.34%, and accuracy 84.83 vs. 72.41%, X2 = 9.460, p = 0.007) for non-oncological lesion and benign tumor detection.

Conclusions

Except for myeloma and lymphoma, [68 Ga]Ga-DOTA-FAPI-04 PET/CT showed a superior detection efficacy for detecting various primary and metastatic lesions than [18F]FDG PET/CT. A comparative detection utility for non-oncological lesion was obtained with both tracers. [68 Ga]Ga-DOTA-FAPI-04 could be used as a broad-spectrum tumor and inflammatory imaging agent in the clinical especially for various solid tumors and non-oncological lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci U S A. 1990;87(18):7235–9. https://doi.org/10.1073/pnas.87.18.7235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Scanlan MJ, Raj BK, Calvo B, Garin-Chesa P, Sanz-Moncasi MP, Healey JH, et al. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc Natl Acad Sci U S A. 1994;91(12):5657–61. https://doi.org/10.1073/pnas.91.12.5657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang XM, Yao TW, Nadvi NA, Osborne B, McCaughan GW, Gorrell MD. Fibroblast activation protein and chronic liver disease. Front Biosci. 2008;13:3168–80. https://doi.org/10.2741/2918.

    Article  CAS  PubMed  Google Scholar 

  4. Kimura T, Monslow J, Klampatsa A, Leibowitz M, Sun J, Liousia M, et al. Loss of cells expressing fibroblast activation protein has variable effects in models of TGF-beta and chronic bleomycin-induced fibrosis. Am J Physiol Lung Cell Mol Physiol. 2019;317(2):L271–82. https://doi.org/10.1152/ajplung.00071.2019.

    Article  CAS  PubMed  Google Scholar 

  5. Dienus K, Bayat A, Gilmore BF, Seifert O. Increased expression of fibroblast activation protein-alpha in keloid fibroblasts: implications for development of a novel treatment option. ARCH DERMATOL RES. 2010;302(10):725–31. https://doi.org/10.1007/s00403-010-1084-x.

    Article  CAS  PubMed  Google Scholar 

  6. Milner JM, Kevorkian L, Young DA, Jones D, Wait R, Donell ST, et al. Fibroblast activation protein alpha is expressed by chondrocytes following a pro-inflammatory stimulus and is elevated in osteoarthritis. ARTHRITIS RES THER. 2006;8(1):R23. https://doi.org/10.1186/ar1877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Milner JM, Patel A, Rowan AD. Emerging roles of serine proteinases in tissue turnover in arthritis. Arthritis Rheum. 2008;58(12):3644–56. https://doi.org/10.1002/art.24046.

    Article  CAS  PubMed  Google Scholar 

  8. Bauer S, Jendro MC, Wadle A, Kleber S, Stenner F, Dinser R, et al. Fibroblast activation protein is expressed by rheumatoid myofibroblast-like synoviocytes. ARTHRITIS RES THER. 2006;8(6):R171. https://doi.org/10.1186/ar2080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Loktev A, Lindner T, Mier W, Debus J, Altmann A, Jager D, et al. A tumor-imaging method targeting cancer-associated fibroblasts. J NUCL MED. 2018;59(9):1423–9. https://doi.org/10.2967/jnumed.118.210435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J NUCL MED. 2018;59(9):1415–22. https://doi.org/10.2967/jnumed.118.210443.

    Article  CAS  PubMed  Google Scholar 

  11. Giesel FL, Kratochwil C, Lindner T, Marschalek MM, Loktev A, Lehnert W, et al. (68)Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J NUCL MED. 2019;60(3):386–92. https://doi.org/10.2967/jnumed.118.215913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. (68)Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J NUCL MED. 2019;60(6):801–5. https://doi.org/10.2967/jnumed.119.227967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen H, Pang Y, Wu J, Zhao L, Hao B, Wu J, et al. Comparison of [(68)Ga]Ga-DOTA-FAPI-04 and [(18)F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging. 2020;47(8):1820–32. https://doi.org/10.1007/s00259-020-04769-z.

    Article  PubMed  Google Scholar 

  14. Chen H, Zhao L, Ruan D, Pang Y, Hao B, Dai Y, et al. Usefulness of [(68)Ga]Ga-DOTA-FAPI-04 PET/CT in patients presenting with inconclusive [(18)F]FDG PET/CT findings. Eur J Nucl Med Mol Imaging. 2021;48(1):73–86. https://doi.org/10.1007/s00259-020-04940-6.

    Article  PubMed  Google Scholar 

  15. Giesel FL, Kratochwil C, Schlittenhardt J, Dendl K, Eiber M, Staudinger F, et al. 2021 Head-to-head intra-individual comparison of biodistribution and tumor uptake of 68Ga-FAPI and 18F-FDG PET/CT in cancer patients. Eur J Nucl Med Mol Imaging. Online ahead of print. https://doi.org/10.1007/s00259-021-05307-1.

  16. Hao B, Wu X, Pang Y, Sun L, Wu H, Huang W, et al. [(18)F]FDG and ([68)Ga]Ga-DOTA-FAPI-04 PET/CT in the evaluation of tuberculous lesions. Eur J Nucl Med Mol Imaging. 2021;48(2):651–2. https://doi.org/10.1007/s00259-020-04941-5.

    Article  PubMed  Google Scholar 

  17. Xu T, Zhao Y, Ding H, Cai L, Zhou Z, Song Z, et al. [(68)Ga]Ga-DOTA-FAPI-04 PET/CT imaging in a case of prostate cancer with shoulder arthritis. Eur J Nucl Med Mol Imaging. 2021;48(4):1254–5. https://doi.org/10.1007/s00259-020-05028-x.

    Article  PubMed  Google Scholar 

  18. Luo Y, Pan Q, Zhang W. IgG4-related disease revealed by (68)Ga-FAPI and (18)F-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2019;46(12):2625–6. https://doi.org/10.1007/s00259-019-04478-2.

    Article  PubMed  Google Scholar 

  19. Luo Y, Pan Q, Zhang W, Li F. Intense FAPI uptake in inflammation may mask the tumor activity of pancreatic cancer in 68Ga-FAPI PET/CT. CLIN NUCL MED. 2020;45(4):310–1. https://doi.org/10.1097/RLU.0000000000002914.

    Article  PubMed  Google Scholar 

  20. Windisch P, Zwahlen DR, Giesel FL, Scholz E, Lugenbiel P, Debus J, et al. Clinical results of fibroblast activation protein (FAP) specific PET for non-malignant indications: systematic review. EJNMMI RES. 2021;11(1):18. https://doi.org/10.1186/s13550-021-00761-2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Luo Y, Pan Q, Yang H, Peng L, Zhang W, Li F. Fibroblast activation protein-targeted PET/CT with (68)Ga-FAPI for imaging IgG4-related disease: comparison to (18)F-FDG PET/CT. J NUCL MED. 2021;62(2):266–71. https://doi.org/10.2967/jnumed.120.244723.

    Article  CAS  PubMed  Google Scholar 

  22. Schmidkonz C, Rauber S, Atzinger A, Agarwal R, Gotz TI, Soare A, et al. Disentangling inflammatory from fibrotic disease activity by fibroblast activation protein imaging. ANN RHEUM DIS. 2020;79(11):1485–91. https://doi.org/10.1136/annrheumdis-2020-217408.

    Article  CAS  PubMed  Google Scholar 

  23. Zimmerman RL, Burke M, Young NA, Solomides CC, Bibbo M. Diagnostic utility of Glut-1 and CA 15–3 in discriminating adenocarcinoma from hepatocellular carcinoma in liver tumors biopsied by fine-needle aspiration. CANCER-AM CANCER SOC. 2002;96(1):53–7. https://doi.org/10.1002/cncr.10309.abs.

    Article  Google Scholar 

  24. Lee JD, Yang WI, Park YN, Kim KS, Choi JS, Yun M, et al. Different glucose uptake and glycolytic mechanisms between hepatocellular carcinoma and intrahepatic mass-forming cholangiocarcinoma with increased (18)F-FDG uptake. J NUCL MED. 2005;46(10):1753–9.

    CAS  PubMed  Google Scholar 

  25. Torizuka T, Tamaki N, Inokuma T, Magata Y, Sasayama S, Yonekura Y, et al. In vivo assessment of glucose metabolism in hepatocellular carcinoma with FDG-PET. J NUCL MED. 1995;36(10):1811–7.

    CAS  PubMed  Google Scholar 

  26. Yun M. Imaging of gastric cancer metabolism using 18 F-FDG PET/CT. J GASTRIC CANCER. 2014;14(1):1–6. https://doi.org/10.5230/jgc.2014.14.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Serfling S, Zhi Y, Schirbel A, Lindner T, Meyer T, Gerhard-Hartmann E, et al. Improved cancer detection in Waldeyer’s tonsillar ring by (68)Ga-FAPI PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48(4):1178–87. https://doi.org/10.1007/s00259-020-05055-8.

    Article  CAS  PubMed  Google Scholar 

  28. Sivesgaard K, Larsen LP, Sorensen M, Kramer S, Schlander S, Amanavicius N, et al. Diagnostic accuracy of CE-CT, MRI and FDG PET/CT for detecting colorectal cancer liver metastases in patients considered eligible for hepatic resection and/or local ablation. EUR RADIOL. 2018;28(11):4735–47. https://doi.org/10.1007/s00330-018-5469-0.

    Article  PubMed  Google Scholar 

  29. Zhao L, Gu J, Fu K, Lin Q, Chen H. 68Ga-FAPI PET/CT in assessment of liver nodules in a cirrhotic patient. CLIN NUCL MED. 2020;45(10):e430–2. https://doi.org/10.1097/RLU.0000000000003015.

    Article  PubMed  Google Scholar 

  30. Shimada H, Okazumi S, Koyama M, Murakami K. Japanese Gastric Cancer Association Task Force for Research Promotion: clinical utility of (1)(8)F-fluoro-2-deoxyglucose positron emission tomography in gastric cancer. A systematic review of the literature. GASTRIC CANCER. 2011;14(1):13–21. https://doi.org/10.1007/s10120-011-0017-5.

    Article  PubMed  Google Scholar 

  31. Rubini G, Altini C, Notaristefano A, Merenda N, Rubini D, Ianora AA, et al. Role of 18F-FDG PET/CT in diagnosing peritoneal carcinomatosis in the restaging of patient with ovarian cancer as compared to contrast enhanced CT and tumor marker Ca-125. Rev Esp Med Nucl Imagen Mol. 2014;33(1):22–7. https://doi.org/10.1016/j.remn.2013.06.008.

    Article  CAS  PubMed  Google Scholar 

  32. Sollini M, Kirienko M, Gelardi F, Fiz F, Gozzi N, Chiti A. 2021 State-of-the-art of FAPI-PET imaging: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging Online ahead of print. https://doi.org/10.1007/s00259-021-05475-0.

  33. Bredella MA, Steinbach L, Caputo G, Segall G, Hawkins R. Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am J Roentgenol. 2005;184(4):1199–204. https://doi.org/10.2214/ajr.184.4.01841199.

    Article  PubMed  Google Scholar 

  34. Sager S, Ergul N, Ciftci H, Cetin G, Guner SI, Cermik TF. The value of FDG PET/CT in the initial staging and bone marrow involvement of patients with multiple myeloma. SKELETAL RADIOL. 2011;40(7):843–7. https://doi.org/10.1007/s00256-010-1088-9.

    Article  PubMed  Google Scholar 

  35. Hayrapetian A, Girgis MD, Yanagawa J, French SW, Schelbert HR, Auerbach MS, et al. Incidental detection of elastofibroma dorsi with 68Ga-FAPI-46 and 18F-FDG PET/CT in a patient with esophageal cancer. CLIN NUCL MED. 2021;46(2):e86–7. https://doi.org/10.1097/RLU.0000000000003218.

    Article  PubMed  Google Scholar 

  36. Varasteh Z, Mohanta S, Robu S, Braeuer M, Li Y, Omidvari N, et al. Molecular imaging of fibroblast activity after myocardial infarction using a (68)Ga-labeled fibroblast activation protein inhibitor, FAPI-04. J NUCL MED. 2019;60(12):1743–9. https://doi.org/10.2967/jnumed.119.226993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pan Q, Luo Y, Zhang W. Recurrent immunoglobulin G4-related disease shown on 18F-FDG and 68Ga-FAPI PET/CT. CLIN NUCL MED. 2020;45(4):312–3. https://doi.org/10.1097/RLU.0000000000002919.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported in part by research foundation projects from Luzhou Science & Technology Department (20107) and The Affiliated Hospital of Southwest Medical University (20087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Chen or Lin Qiu.

Ethics declarations

Ethics approval

The Affiliated Hospital of Southwest Medical University Review Board approved this study and all patients received oral and written information on the routine tests performed in this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

First author: Lianjun Lan and Lin Qiu

This article is part of the Topical Collection on Oncology - General.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, L., Liu, H., Wang, Y. et al. The potential utility of [68 Ga]Ga-DOTA-FAPI-04 as a novel broad-spectrum oncological and non-oncological imaging agent—comparison with [18F]FDG. Eur J Nucl Med Mol Imaging 49, 963–979 (2022). https://doi.org/10.1007/s00259-021-05522-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05522-w

Keywords

Navigation