Skip to main content

Advertisement

Log in

Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: a systematic review and meta-analysis

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Prediction of immunotherapy response and outcome in patients with non-small cell lung cancer (NSCLC) is challenging due to intratumoral heterogeneity and lack of robust biomarkers. The aim of this study was to systematically evaluate the methodological quality of radiomic studies for predicting immunotherapy response or outcome in patients with NSCLC.

Methods

We systematically searched for eligible studies in the PubMed and Web of Science datasets up to April 1, 2021. The methodological quality of included studies was evaluated using the phase classification criteria for image mining studies and the radiomics quality scoring (RQS) tool. A meta-analysis of studies regarding the prediction of immunotherapy response and outcome in patients with NSCLC was performed.

Results

Fifteen studies were identified with sample sizes ranging from 30 to 228. Seven studies were classified as phase II, and the remaining as discovery science (n = 2), phase 0 (n = 4), phase I (n = 1), and phase III (n = 1). The mean RQS score of all studies was 29.6%, varying from 0 to 68.1%. The pooled diagnostic odds ratio for predicting immunotherapy response in NSCLC using radiomics was 14.99 (95% confidence interval [CI] 8.66–25.95). In addition, radiomics could divide patients into high- and low-risk group with significantly different overall survival (pooled hazard ratio [HR]: 1.96, 95%CI 1.61–2.40, p < 0.001) and progression-free survival (pooled HR: 2.39, 95%CI 1.69–3.38, p < 0.001).

Conclusions

Radiomics has potential to noninvasively predict immunotherapy response and outcome in patients with NSCLC. However, it has not yet been implemented as a clinical decision-making tool. Further external validation and evaluation within clinical pathway can facilitate personalized treatment for patients with NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article and its supplementary information files.

Code availability

Not applicable.

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  PubMed  Google Scholar 

  2. Remon J, Ahn MJ, Girard N, et al. Advanced-stage non-small cell lung cancer: advances in thoracic oncology 2018. J Thorac Oncol. 2019;14(7):1134–55.

    Article  PubMed  CAS  Google Scholar 

  3. Creelan BC. Update on immune checkpoint inhibitors in lung cancer. Cancer Control. 2014;21(1):80–9.

    Article  PubMed  Google Scholar 

  4. Luke JJ, Ott PA. PD-1 pathway inhibitors: the next generation of immunotherapy for advanced melanoma. Oncotarget. 2015;6(6):3479–92.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mok TSK, Wu YL, Kudaba I, et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): a randomised, open-label, controlled, phase 3 trial. Lancet. 2019;393(10183):1819–30.

    Article  PubMed  CAS  Google Scholar 

  7. Murakami S. Durvalumab for the treatment of non-small cell lung cancer. Expert Rev Anticancer Ther. 2019;19(12):1009–16.

    Article  PubMed  CAS  Google Scholar 

  8. Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med. 2018;378(24):2288–301.

    Article  PubMed  CAS  Google Scholar 

  9. Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 2019;12(1):92.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.

    Article  PubMed  Google Scholar 

  12. Teixido C, Vilarino N, Reyes R, Reguart N. PD-L1 expression testing in non-small cell lung cancer. Ther Adv Med Oncol. 2018;10:1758835918763493.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Galon J, Mlecnik B, Bindea G, et al. Towards the introduction of the “Immunoscore” in the classification of malignant tumours. J Pathol. 2014;232(2):199–209.

    Article  PubMed  CAS  Google Scholar 

  14. Haragan A, Field JK, Davies MPA, Escriu C, Gruver A, Gosney JR. Heterogeneity of PD-L1 expression in non-small cell lung cancer: implications for specimen sampling in predicting treatment response. Lung Cancer. 2019;134:79–84.

    Article  PubMed  Google Scholar 

  15. Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther. 2015;14(4):847–56.

    Article  PubMed  CAS  Google Scholar 

  16. Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer. 2012;48(4):441–6.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Patyk M, Silicki J, Mazur R, Krecichwost R, Sokolowska-Dabek D, Zaleska-Dorobisz U. Radiomics—the value of the numbers in present and future radiology. Pol J Radiol. 2018;83:e171–4.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Mu W, Tunali I, Gray JE, Qi J, Schabath MB, Gillies RJ. Radiomics of (18)F-FDG PET/CT images predicts clinical benefit of advanced NSCLC patients to checkpoint blockade immunotherapy. Eur J Nucl Med Mol Imaging. 2020;47(5):1168–82.

    Article  PubMed  CAS  Google Scholar 

  20. Scrivener M, de Jong EEC, van Timmeren JE, Pieters T, Ghaye B, Geets X. Radiomics applied to lung cancer: a review. Transl Cancer Res. 2016;5(4):398–409.

    Article  Google Scholar 

  21. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging. 2019;46(13):2656–72.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749–62.

    Article  PubMed  Google Scholar 

  24. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Stat Med. 1998;17(24):2815–34.

    Article  PubMed  CAS  Google Scholar 

  25. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  PubMed  PubMed Central  Google Scholar 

  26. He BX, Dong D, She YL, et al. Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker. J Immunother Cancer. 2020;8(2):e000550.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Khorrami M, Prasanna P, Gupta A, et al. Changes in CT radiomic features associated with lymphocyte distribution predict overall survival and response to immunotherapy in non-small cell lung cancer. Cancer Immunol Res. 2020;8(1):108–19.

    Article  PubMed  CAS  Google Scholar 

  28. Ladwa R, Roberts KE, O’Leary C, Maggacis N, O’Byrne KJ, Miles K. Computed tomography texture analysis of response to second-line nivolumab in metastatic non-small cell lung cancer. Lung Cancer Manag. 2020;9(3):LMT38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Liu C, Gong J, Yu H, Liu Q, Wang SP, Wang JL. A CT-based radiomics approach to predict nivolumab response in advanced non-small-cell lung cancer. Front Oncol. 2021;11:544339.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nardone V, Tini P, Pastina P, et al. Radiomics predicts survival of patients with advanced non-small cell lung cancer undergoing PD-1 blockade using nivolumab. Oncol Lett. 2020;19(2):1559–66.

    PubMed  CAS  Google Scholar 

  31. Polverari G, Ceci F, Bertaglia V, et al. (18)F-FDG Pet parameters and radiomics features analysis in advanced NSCLC treated with immunotherapy as predictors of therapy response and survival. Cancers (Basel). 2020;12(5):1163.

    Article  CAS  Google Scholar 

  32. Ravanelli M, Agazzi GM, Milanese G, et al. Prognostic and predictive value of histogram analysis in patients with non-small cell lung cancer refractory to platinum treated by nivolumab: a multicentre retrospective study. Eur J Radiol. 2019;118:251–6.

    Article  PubMed  Google Scholar 

  33. Trebeschi S, Drago SG, Birkbak NJ, et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann Oncol. 2019;30(6):998–1004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tunali I, Gray JE, Qi J, et al. Novel clinical and radiomic predictors of rapid disease progression phenotypes among lung cancer patients treated with immunotherapy: an early report. Lung Cancer. 2019;129:75–9.

    Article  PubMed  Google Scholar 

  35. Vaidya P, Bera K, Patil PD, et al. Novel, non-invasive imaging approach to identify patients with advanced non-small cell lung cancer at risk of hyperprogressive disease with immune checkpoint blockade. J Immunother Cancer. 2020;8(2):e001343.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Valentinuzzi D, Vrankar M, Boc N, et al. [18F]FDG PET immunotherapy radiomics signature (iRADIOMICS) predicts response of non-small-cell lung cancer patients treated with pembrolizumab. Radiol Oncol. 2020;54(3):285–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yang Y, Yang JC, Shen L, et al. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer. Am J Transl Res. 2021;13(2):743–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Dercle L, Fronheiser M, Lu L, et al. Identification of non-small cell lung cancer sensitive to systemic cancer therapies using radiomics. Clin Cancer Res. 2020;26(9):2151–62.

    Article  PubMed  CAS  Google Scholar 

  39. Liu Y, Wu M, Zhang Y, et al. Imaging biomarkers to predict and evaluate the effectiveness of immunotherapy in advanced non-small-cell lung cancer. Front Oncol. 2021;11:657615.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology. 2018;286(3):800–9.

    Article  PubMed  Google Scholar 

  41. Liu Z, Wang S, Dong D, et al. The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics. 2019;9(5):1303–22.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kalpathy-Cramer J, Freymann JB, Kirby JS, Kinahan PE, Prior FW. Quantitative imaging network: data sharing and competitive algorithm validation leveraging the cancer imaging archive. Transl Oncol. 2014;7(1):147–52.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594.

    Article  PubMed  Google Scholar 

  44. Sanduleanu S, Woodruff HC, de Jong EEC, et al. Tracking tumor biology with radiomics: a systematic review utilizing a radiomics quality score. Radiother Oncol. 2018;127(3):349–60.

    Article  PubMed  Google Scholar 

  45. Park JE, Kim D, Kim HS, et al. Quality of science and reporting of radiomics in oncologic studies: room for improvement according to radiomics quality score and TRIPOD statement. Eur Radiol. 2020;30(1):523–36.

    Article  PubMed  Google Scholar 

  46. Yi M, Jiao D, Xu H, et al. Biomarkers for predicting efficacy of PD-1/PD-L1 inhibitors. Mol Cancer. 2018;17(1):129.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zou W, Wolchok JD, Chen L. PD-L1 (B7–H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work received funding from the National Natural Science Foundation of China (81871323 and 81801665); National Natural Science Foundation of Guangdong Province (2018B030311024); and Scientific Research Cultivation and Innovation Foundation of Jinan University (21620447). The funders had no role in study design, data collection and analysis, preparation of the manuscript, or decision to publish.

Author information

Authors and Affiliations

Authors

Contributions

QYC and LZ contributed to the conception and design of the study, the analysis and interpretation of data, and the work draft. XKM, FW, JF, and ZJ participated in the data extraction and analysis. JJY and LYC designed figures and tables. BZ and SXZ offered guidance in study design and revised the article critically for important intellectual content. All authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Bin Zhang or Shuixing Zhang.

Ethics declarations

Conflict interest

The authors declare no conflict interest.

Ethics approval

This review was approved by the institutional review board of the First Affiliated Hospital of Jinan University.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Chest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 kb)

259_2021_5509_MOESM2_ESM.tif

Supplementary Figure 1. Forest plot of pooled diagnostic performance of radiomic models in evaluating immunotherapy response in NSCLC patients. (a) Sensitivity; (b) Specificity; (c) Positive likelihood ratio; and (d) Negative likelihood ratio. Note: Diagnostic performance for each study is presented as a black dot, with the horizontal line indicating the 95% confidence interval. Pooled result for all studies is presented as a black diamond. (TIF 2896 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Zhang, L., Mo, X. et al. Current status and quality of radiomic studies for predicting immunotherapy response and outcome in patients with non-small cell lung cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 49, 345–360 (2021). https://doi.org/10.1007/s00259-021-05509-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05509-7

Keywords

Navigation