Skip to main content
Log in

Role of [68Ga]Ga-DOTA-FAPI-04 PET/CT in the evaluation of peritoneal carcinomatosis and comparison with [18F]-FDG PET/CT

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to explore the role of [68Ga]Ga-DOTA-FAPI-04 positron emission tomography/computed tomography (PET/CT), compared with 18F-fluorodeoxyglucose [18F]-FDG PET/CT, for evaluating peritoneal carcinomatosis in patients with various types of cancer.

Methods

Patients with suspected peritoneal malignancy, who underwent both [18F]-FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT between October 2019 and August 2020, were retrospectively analysed. The radiotracer uptake, peritoneal cancer index (PCI) score, and diagnostic performance of [18F]-FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT were evaluated and compared.

Results

Our cohort consisted of 46 patients, including 16 patients with diffuse-type peritoneal carcinomatosis, 27 with nodular-type peritoneal carcinomatosis, and 3 true-negative patients. A significant difference in standard uptake values (SUV) of lesions between [18F]-FDG and [68Ga]Ga-DOTA-FAPI-04 PET/CT examination was observed (median SUV: 3.48 vs. 9.82; P < 0.001), particularly in peritoneal carcinomatosis from gastric cancer (median SUV: 3.44 vs. 8.05; P = 0.001). Moreover, [68Ga]Ga-DOTA-FAPI-04 PET/CT showed a higher PCI score and better sensitivity than [18F]-FDG PET/CT for the detection of peritoneal carcinomatosis (6 vs. 18; P < 0.001; 72.09% vs. 97.67%; P = 0.002).

Conclusion

[68Ga]Ga-DOTA-FAPI-04 PET/CT demonstrated superior sensitivity over [18F]-FDG PET/CT for the detection of peritoneal carcinomatosis in patients with various types of cancer, particularly gastric cancer. Furthermore, the uptake of [68Ga]Ga-DOTA-FAPI-04 in peritoneal carcinomatosis was significantly higher than that of [18F]-FDG, demonstrating a larger extent of the lesions and yielding a higher PCI score. This could help enhance the image contrast, improve physicians’ diagnostic confidence, and reduce the proportion of missed diagnoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57–70. https://doi.org/10.1016/s0092-8674(00)81683-9.

    Article  CAS  PubMed  Google Scholar 

  2. Glehen O, Osinsky D, Cotte E, Kwiatkowski F, Freyer G, Isaac S, et al. Intraperitoneal chemohyperthermia using a closed abdominal procedure and cytoreductive surgery for the treatment of peritoneal carcinomatosis: morbidity and mortality analysis of 216 consecutive procedures. Ann Surg Oncol. 2003;10(8):863–9. https://doi.org/10.1245/aso.2003.01.018.

    Article  CAS  PubMed  Google Scholar 

  3. Cashin PH, Mahteme H, Spang N, Syk I, Frodin JE, Torkzad M, et al. Cytoreductive surgery and intraperitoneal chemotherapy versus systemic chemotherapy for colorectal peritoneal metastases: a randomised trial. Eur J Cancer. 2016;53:155–62. https://doi.org/10.1016/j.ejca.2015.09.017.

    Article  CAS  PubMed  Google Scholar 

  4. Jacobson R, Sherman SK, Dahdaleh F, Turaga KK. Peritoneal metastases in colorectal cancer. Ann Surg Oncol. 2018;25(8):2145–51. https://doi.org/10.1245/s10434-018-6490-x.

    Article  PubMed  Google Scholar 

  5. Froysnes IS, Andersson Y, Larsen SG, Davidson B, Oien JT, Julsrud L, et al. ImmunoPeCa trial: long-term outcome following intraperitoneal MOC31PE immunotoxin treatment in colorectal peritoneal metastasis. Eur J Surg Oncol. 2019. https://doi.org/10.1016/j.ejso.2019.04.014.

  6. Alyami M, Hubner M, Grass F, Bakrin N, Villeneuve L, Laplace N, et al. Pressurised intraperitoneal aerosol chemotherapy: rationale, evidence, and potential indications. Lancet Oncol. 2019;20(7):e368–e77. https://doi.org/10.1016/S1470-2045(19)30318-3.

    Article  PubMed  Google Scholar 

  7. Marin D, Catalano C, Baski M, Di Martino M, Geiger D, Di Giorgio A, et al. 64-Section multi-detector row CT in the preoperative diagnosis of peritoneal carcinomatosis: correlation with histopathological findings. Abdom Imaging. 2010;35(6):694–700. https://doi.org/10.1007/s00261-008-9464-9.

    Article  PubMed  Google Scholar 

  8. Gryspeerdt S, Clabout L, Van Hoe L, Berteloot P, Vergote IB. Intraperitoneal contrast material combined with CT for detection of peritoneal metastases of ovarian cancer. Eur J Gynaecol Oncol. 1998;19(5):434–7.

    CAS  PubMed  Google Scholar 

  9. Brizi MG, Natale L, Manfredi R, Barbaro B, Vecchioli A, Marano P. Staging of pancreatic ductal adenocarcinoma with spiral CT and MRI. Rays. 2001;26(2):151–9.

    CAS  PubMed  Google Scholar 

  10. Low RN. MR imaging of the peritoneal spread of malignancy. Abdom Imaging. 2007;32(3):267–83. https://doi.org/10.1007/s00261-007-9210-8.

    Article  PubMed  Google Scholar 

  11. Kostakoglu L, Agress H Jr, Goldsmith SJ. Clinical role of FDG PET in evaluation of cancer patients. Radiographics. 2003;23(2):315–40; quiz 533. https://doi.org/10.1148/rg.232025705.

    Article  PubMed  Google Scholar 

  12. Kim SJ, Lee SW. Diagnostic accuracy of (18)F-FDG PET/CT for detection of peritoneal carcinomatosis; a systematic review and meta-analysis. Br J Radiol. 2018;91(1081):20170519. https://doi.org/10.1259/bjr.20170519.

    Article  PubMed  Google Scholar 

  13. Suzuki A, Kawano T, Takahashi N, Lee J, Nakagami Y, Miyagi E, et al. Value of 18F-FDG PET in the detection of peritoneal carcinomatosis. Eur J Nucl Med Mol Imaging. 2004;31(10):1413–20. https://doi.org/10.1007/s00259-004-1577-y.

    Article  PubMed  Google Scholar 

  14. Lopez-Lopez V, Cascales-Campos PA, Gil J, Frutos L, Andrade RJ, Fuster-Quinonero M, et al. Use of (18)F-FDG PET/CT in the preoperative evaluation of patients diagnosed with peritoneal carcinomatosis of ovarian origin, candidates to cytoreduction and hipec. A pending issue. Eur J Radiol. 2016;85(10):1824–8. https://doi.org/10.1016/j.ejrad.2016.08.006.

    Article  CAS  PubMed  Google Scholar 

  15. Soyka JD, Strobel K, Veit-Haibach P, Schaefer NG, Schmid DT, Tschopp A, et al. Influence of bowel preparation before 18F-FDG PET/CT on physiologic 18F-FDG activity in the intestine. J Nucl Med. 2010;51(4):507–10. https://doi.org/10.2967/jnumed.109.071001.

    Article  CAS  PubMed  Google Scholar 

  16. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16(9):582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  17. Chen X, Song E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat Rev Drug Discov. 2019;18(2):99–115. https://doi.org/10.1038/s41573-018-0004-1.

    Article  CAS  PubMed  Google Scholar 

  18. Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. (68)Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60(6):801–5. https://doi.org/10.2967/jnumed.119.227967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59(9):1415–22. https://doi.org/10.2967/jnumed.118.210443.

    Article  CAS  PubMed  Google Scholar 

  20. Chen H, Pang Y, Wu J, Zhao L, Hao B, Wu J, et al. Comparison of [(68)Ga]Ga-DOTA-FAPI-04 and [(18)F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging. 2020. https://doi.org/10.1007/s00259-020-04769-z.

  21. Chen H, Zhao L, Ruan D, Pang Y, Hao B, Dai Y, et al. Usefulness of [(68)Ga]Ga-DOTA-FAPI-04 PET/CT in patients presenting with inconclusive [(18)F]FDG PET/CT findings. Eur J Nucl Med Mol Imaging. 2020. https://doi.org/10.1007/s00259-020-04940-6.

  22. Zhao L, Zhuang Y, Fu K, Chen P, Wang Y, Zhuo J, et al. Usefulness of [(18)F]fluorodeoxyglucose PET/CT for evaluating the PD-L1 status in nasopharyngeal carcinoma. Eur J Nucl Med Mol Imaging. 2020. https://doi.org/10.1007/s00259-019-04654-4.

  23. Sugarbaker PH. Peritonectomy procedures. Ann Surg. 1995;221(1):29–42. https://doi.org/10.1097/00000658-199501000-00004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pletcher E, Gleeson E, Labow D. Peritoneal cancers and hyperthermic intraperitoneal chemotherapy. Surg Clin North Am. 2020;100(3):589–613. https://doi.org/10.1016/j.suc.2020.02.009.

    Article  PubMed  Google Scholar 

  25. van Baal J, van Noorden CJF, Nieuwland R, Van de Vijver KK, Sturk A, van Driel WJ, et al. Development of peritoneal carcinomatosis in epithelial ovarian cancer: a review. J Histochem Cytochem. 2018;66(2):67–83. https://doi.org/10.1369/0022155417742897.

    Article  CAS  PubMed  Google Scholar 

  26. Raptopoulos V, Gourtsoyiannis N. Peritoneal carcinomatosis. Eur Radiol. 2001;11(11):2195–206. https://doi.org/10.1007/s003300100998.

    Article  CAS  PubMed  Google Scholar 

  27. Akin EA, Qazi ZN, Osman M, Zeman RK. Clinical impact of FDG PET/CT in alimentary tract malignancies: an updated review. Abdom Radiol (NY). 2020;45(4):1018–35. https://doi.org/10.1007/s00261-020-02447-0.

    Article  Google Scholar 

  28. Jacquet P, Sugarbaker PH. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res. 1996;82:359–74. https://doi.org/10.1007/978-1-4613-1247-5_23.

    Article  CAS  PubMed  Google Scholar 

  29. Archer AG, Sugarbaker PH, Jelinek JS. Radiology of peritoneal carcinomatosis. Cancer Treat Res. 1996;82:263–88. https://doi.org/10.1007/978-1-4613-1247-5_17.

    Article  CAS  PubMed  Google Scholar 

  30. Mo S, Cai G. Multidisciplinary treatment for colorectal peritoneal metastases: review of the literature. Gastroenterol Res Pract. 2016;2016:1516259. https://doi.org/10.1155/2016/1516259.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Abdalla Ahmed S, Abou-Taleb H, Ali N, MB D. Accuracy of radiologic- laparoscopic peritoneal carcinomatosis categorization in the prediction of surgical outcome. Br J Radiol. 2019;92(1100):20190163. https://doi.org/10.1259/bjr.20190163.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Elzarkaa AA, Shaalan W, Elemam D, Mansour H, Melis M, Malik E, et al. Peritoneal cancer index as a predictor of survival in advanced stage serous epithelial ovarian cancer: a prospective study. J Gynecol Oncol. 2018;29(4):e47. https://doi.org/10.3802/jgo.2018.29.e47.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chang MC, Chen JH, Liang JA, Huang WS, Cheng KY, Kao CH. PET or PET/CT for detection of peritoneal carcinomatosis: a meta-analysis. Clin Nucl Med. 2013;38(8):623–9. https://doi.org/10.1097/RLU.0b013e318299609f.

    Article  PubMed  Google Scholar 

  34. Smyth EC, Verheij M, Allum W, Cunningham D, Cervantes A, Arnold D, et al. Gastric cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2016;27(suppl 5):v38–49. https://doi.org/10.1093/annonc/mdw350.

    Article  CAS  PubMed  Google Scholar 

  35. Lim JS, Kim MJ, Yun MJ, Oh YT, Kim JH, Hwang HS, et al. Comparison of CT and 18F-FDG pet for detecting peritoneal metastasis on the preoperative evaluation for gastric carcinoma. Korean J Radiol. 2006;7(4):249–56. https://doi.org/10.3348/kjr.2006.7.4.249.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Honma Y, Terauchi T, Tateishi U, Kano D, Nagashima K, Shoji H, et al. Imaging peritoneal metastasis of gastric cancer with (18)F-fluorothymidine positron emission tomography/computed tomography: a proof-of-concept study. Br J Radiol. 2018;91(1089):20180259. https://doi.org/10.1259/bjr.20180259.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yoshioka T, Yamaguchi K, Kubota K, Saginoya T, Yamazaki T, Ido T, et al. Evaluation of 18F-FDG PET in patients with advanced, metastatic, or recurrent gastric cancer. J Nucl Med. 2003;44(5):690–9.

    CAS  PubMed  Google Scholar 

  38. Capobianco A, Cottone L, Monno A, Manfredi AA, Rovere-Querini P. The peritoneum: healing, immunity, and diseases. J Pathol. 2017;243(2):137–47. https://doi.org/10.1002/path.4942.

    Article  PubMed  Google Scholar 

  39. Lv ZD, Wang HB, Li FN, Wu L, Liu C, Nie G, et al. TGF-beta1 induces peritoneal fibrosis by activating the Smad2 pathway in mesothelial cells and promotes peritoneal carcinomatosis. Int J Mol Med. 2012;29(3):373–9. https://doi.org/10.3892/ijmm.2011.852.

    Article  CAS  PubMed  Google Scholar 

  40. Turlakow A, Yeung HW, Salmon AS, Macapinlac HA, Larson SM. Peritoneal carcinomatosis: role of (18)F-FDG PET. J Nucl Med. 2003;44(9):1407–12.

    PubMed  Google Scholar 

  41. Calais J, Mona CE. Will FAPI PET/CT Replace FDG PET/CT in the next decade?-point: an important diagnostic, phenotypic and biomarker role. AJR Am J Roentgenol. 2020. https://doi.org/10.2214/AJR.20.24302.

Download references

Funding

This work was funded by National Natural Science Foundation of China (Grant numbers 81772893 and 81701736) and the key medical and health projects in Xiamen (Grant number 3502Z20191104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Lin or Haojun Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

All procedures involving human participants were carried out in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any experiments with animals.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - General

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Pang, Y., Luo, Z. et al. Role of [68Ga]Ga-DOTA-FAPI-04 PET/CT in the evaluation of peritoneal carcinomatosis and comparison with [18F]-FDG PET/CT. Eur J Nucl Med Mol Imaging 48, 1944–1955 (2021). https://doi.org/10.1007/s00259-020-05146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-05146-6

Keywords

Navigation