Skip to main content

Advertisement

Log in

Integration of PET-imaging into radiotherapy treatment planning for low-grade meningiomas improves outcome

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Meningiomas have an excellent survival prognosis, and radiotherapy (RT) is a central component of interdisciplinary treatment. During treatment planning, the definition of the target volume remains challenging using MR and CT imaging alone. This is the first study to analyze the impact of additional PET-imaging on local control (LC) and overall survival (OS) after high-precision RT.

Methods

We analyzed 339 meningiomas treated between 2000 and 2018. For analyses, we divided the patients in low-grade (n = 276) and high-grade (n = 63) cases. We performed RT in an adjuvant setting due to subtotal resection or later due to recurrent tumor growth. The target volumes were delineated based on diagnostic CT and MRI and, if available, additional PET-imaging (low-grade: n = 164, 59.4%; high-grade: n = 39, 61.9%) with either 68Ga-Dotanoc/Dotatoc, 18F-fluoroethyltyrosine or 11C-methionine tracer. Patients were treated with fractionated stereotactic RT with a median total dose and dose per fraction of 54 Gy and 1.8 Gy, respectively.

Results

Median follow-up was 5.6 years. For low-grade meningiomas, mean OS was 15.6 years and mean LC was 16.9 years; for high-grade cases mean OS was 11.6 years, and mean LC was 11.1 years. In univariate analyses, PET-imaging had a significant impact on OS (p = 0.035) and LC (p = 0.041) for low-grade meningiomas and remained significant (p = 0.015) for LC in the multivariate analysis. For high-grade cases, PET did not influence both OS and LC. Further prognostic factors could be identified.

Conclusions

For low-grade meningiomas, we showed that the addition of PET-imaging for target volume definition led to a significantly enhanced LC. Thus, PET improves the detection of tumor cells and helps distinguish between healthy tissue and meningioma tissue, especially during the treatment planning process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goldbrunner R, Minniti G, Preusser M, Jenkinson MD, Sallabanda K, Houdart E, et al. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016;17(9):e383–91.

    Article  Google Scholar 

  2. Combs SE, Ganswindt U, Foote RL, Kondziolka D, Tonn JC. State-of-the-art treatment alternatives for base of skull meningiomas: complementing and controversial indications for neurosurgery, stereotactic and robotic based radiosurgery or modern fractionated radiation techniques. Radiat Oncol. 2012;7(1):226.

    Article  Google Scholar 

  3. Rogers L, Zhang P, Vogelbaum MA, Perry A, Ashby LS, Modi JM, et al. Intermediate-risk meningioma: initial outcomes from NRG Oncology RTOG 0539. J Neurosurg. 2018;129(1):35–47.

    Article  Google Scholar 

  4. Weber DC, Ares C, Villa S, Peerdeman SM, Renard L, Baumert BG, et al. Adjuvant postoperative high-dose radiotherapy for atypical and malignant meningioma: a phase-II parallel non-randomized and observation study (EORTC 22042-26042). Radiother Oncol. 2018;128(2):260–5.

    Article  Google Scholar 

  5. Wang C, Kaprealian TB, Suh JH, Kubicky CD, Ciporen JN, Chen Y, et al. Overall survival benefit associated with adjuvant radiotherapy in WHO grade II meningioma. Neuro-oncology. 2017;19(9):1263–70.

    Article  CAS  Google Scholar 

  6. Kessel KA, Fischer H, Oechnser M, Zimmer C, Meyer B, Combs SE. High-precision radiotherapy for meningiomas : Long-term results and patient-reported outcome (PRO). Strahlenther Onkol. 2017;193(11):921–30.

    Article  Google Scholar 

  7. Afshar-Oromieh A, Giesel FL, Linhart HG, Haberkorn U, Haufe S, Combs SE, et al. Detection of cranial meningiomas: comparison of (6)(8)Ga-DOTATOC PET/CT and contrast-enhanced MRI. Eur J Nucl Med Mol Imaging. 2012;39(9):1409–15.

    Article  Google Scholar 

  8. Rachinger W, Stoecklein VM, Terpolilli NA, Haug AR, Ertl L, Poschl J, et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue. J Nucl Med. 2015;56(3):347–53.

    Article  CAS  Google Scholar 

  9. Dittmar JO, Kratochwil C, Dittmar A, Welzel T, Habermehl D, Rieken S, et al. First intraindividual comparison of contrast-enhanced MRI, FET- and DOTATOC- PET in patients with intracranial meningiomas. Radiat Oncol. 2017;12(1):169.

    Article  Google Scholar 

  10. Combs SE, Welzel T, Habermehl D, Rieken S, Dittmar JO, Kessel K, et al. Prospective evaluation of early treatment outcome in patients with meningiomas treated with particle therapy based on target volume definition with MRI and 68Ga-DOTATOC-PET. Acta Oncol. 2013;52(3):514–20.

    Article  CAS  Google Scholar 

  11. Graf R, Nyuyki F, Steffen IG, Michel R, Fahdt D, Wust P, et al. Contribution of 68Ga-DOTATOC PET/CT to target volume delineation of skull base meningiomas treated with stereotactic radiation therapy. Int J Radiat Oncol Biol Phys. 2013;85(1):68–73.

    Article  Google Scholar 

  12. Grosu AL, Weber WA, Astner ST, Adam M, Krause BJ, Schwaiger M, et al. 11C-methionine PET improves the target volume delineation of meningiomas treated with stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys. 2006;66(2):339–44.

    Article  CAS  Google Scholar 

  13. Milker-Zabel S, Zabel-du Bois A, Henze M, Huber P, Schulz-Ertner D, Hoess A, et al. Improved target volume definition for fractionated stereotactic radiotherapy in patients with intracranial meningiomas by correlation of CT, MRI, and [68Ga]-DOTATOC-PET. Int J Radiat Oncol Biol Phys. 2006;65(1):222–7.

    Article  Google Scholar 

  14. Stade F, Dittmar JO, Jakel O, Kratochwil C, Haberkorn U, Debus J, et al. Influence of (68)Ga-DOTATOC on sparing of normal tissue for radiation therapy of skull base meningioma: differential impact of photon and proton radiotherapy. Radiat Oncol. 2018;13(1):58.

    Article  Google Scholar 

  15. Afshar-Oromieh A, Wolf MB, Kratochwil C, Giesel FL, Combs SE, Dimitrakopoulou-Strauss A, et al. Comparison of (6)(8)Ga-DOTATOC-PET/CT and PET/MRI hybrid systems in patients with cranial meningioma: initial results. Neuro-Oncology. 2015;17(2):312–9.

    Article  CAS  Google Scholar 

  16. Astner ST, Dobrei-Ciuchendea M, Essler M, Bundschuh RA, Sai H, Schwaiger M, et al. Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int J Radiat Oncol Biol Phys. 2008;72(4):1161–7.

    Article  Google Scholar 

  17. Graf R, Plotkin M, Steffen IG, Wurm R, Wust P, Brenner W, et al. Magnetic resonance imaging, computed tomography, and 68Ga-DOTATOC positron emission tomography for imaging skull base meningiomas with infracranial extension treated with stereotactic radiotherapy--a case series. Head Face Med. 2012;8(1):1.

    Article  CAS  Google Scholar 

  18. Acker G, Kluge A, Lukas M, Conti A, Pasemann D, Meinert F, et al. Impact of 68Ga-DOTATOC PET/MRI on robotic radiosurgery treatment planning in meningioma patients: first experiences in a single institution. Neurosurg Focus. 2019;46(6):E9.

    Article  Google Scholar 

  19. Galldiks N, Albert NL, Sommerauer M, Grosu AL, Ganswindt U, Law I, et al. PET imaging in patients with meningioma-report of the RANO/PET Group. Neuro-Oncology. 2017;19(12):1576–87.

    Article  CAS  Google Scholar 

  20. Adeberg S, Hartmann C, Welzel T, Rieken S, Habermehl D, von Deimling A, et al. Long-term outcome after radiotherapy in patients with atypical and malignant meningiomas--clinical results in 85 patients treated in a single institution leading to optimized guidelines for early radiation therapy. Int J Radiat Oncol Biol Phys. 2012;83(3):859–64.

    Article  Google Scholar 

  21. Rosenberg LA, Prayson RA, Lee J, Reddy C, Chao ST, Barnett GH, et al. Long-term experience with World Health Organization grade III (malignant) meningiomas at a single institution. Int J Radiat Oncol Biol Phys. 2009;74(2):427–32.

    Article  Google Scholar 

  22. Frostell A, Hakim R, Dodoo E, Sinclair G, Ohlsson M, Forander P, et al. Adjuvant stereotactic radiosurgery reduces need for retreatments in patients with meningioma residuals. World Neurosurg. 2016;88:475–82.

    Article  Google Scholar 

  23. Terpolilli NA, Ueberschaer M, Niyazi M, Hintschich C, Egensperger R, Muacevic A, et al. Long-term outcome in orbital meningiomas: progression-free survival after targeted resection combined with early or postponed postoperative radiotherapy. J Neurosurg. 2019;1–11. https://doi.org/10.3171/2019.3.JNS181760

  24. Zanoletti E, Mazzoni A, Martini A, Abbritti RV, Albertini R, Alexandre E, et al. Surgery of the lateral skull base: a 50-year endeavour. Acta Otorhinolaryngol Ital. 2019;39(SUPPL. 1):S1–S146.

    Article  CAS  Google Scholar 

  25. Kim JW, Jung HW, Kim YH, Park CK, Chung HT, Paek SH, et al. Petroclival meningiomas: long-term outcomes of multimodal treatments and management strategies based on 30 years of experience at a single institution. J Neurosurg. 2019;1–8. https://doi.org/10.3171/2019.2.JNS182604

  26. Thorwarth D, Müller A-C, Pfannenberg C, Beyer T. Combined PET/MR imaging using 68Ga-DOTATOC for radiotherapy treatment planning in meningioma patients. In: Theranostics, Gallium-68, and other radionuclides, vol. 194. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 425–39.

    Chapter  Google Scholar 

  27. Henze M, Schuhmacher J, Hipp P, Kowalski J, Becker DW, Doll J, et al. PET imaging of somatostatin receptors using [68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas. J Nucl Med. 2001;42(7):1053–6.

    CAS  PubMed  Google Scholar 

  28. Nyuyki F, Plotkin M, Graf R, Michel R, Steffen I, Denecke T, et al. Potential impact of (68)Ga-DOTATOC PET/CT on stereotactic radiotherapy planning of meningiomas. Eur J Nucl Med Mol Imaging. 2010;37(2):310–8.

    Article  Google Scholar 

  29. Kunz WG, Jungblut LM, Kazmierczak PM, Vettermann FJ, Bollenbacher A, Tonn JC, et al. Improved detection of transosseous meningiomas using (68)Ga-DOTATATE PET/CT compared with contrast-enhanced MRI. J Nucl Med. 2017;58(10):1580–7.

    Article  CAS  Google Scholar 

  30. Sommerauer M, Burkhardt JK, Frontzek K, Rushing E, Buck A, Krayenbuehl N, et al. 68Gallium-DOTATATE PET in meningioma: a reliable predictor of tumor growth rate? Neuro-Oncology. 2016;18(7):1021–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin A. Kessel.

Ethics declarations

The local ethics committee of the Medical Faculty of the Technical University Munich (TUM) approved the study, vote number 434/15. This study is registered under the open science framework: DOI 10.17605/OSF.IO/RYX9D.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology – Brain

Electronic supplementary material

ESM 1

(DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kessel, K.A., Weber, W., Yakushev, I. et al. Integration of PET-imaging into radiotherapy treatment planning for low-grade meningiomas improves outcome. Eur J Nucl Med Mol Imaging 47, 1391–1399 (2020). https://doi.org/10.1007/s00259-019-04591-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04591-2

Keywords

Navigation