Skip to main content
Log in

18F-DOPA PET/CT in brain tumors: impact on multidisciplinary brain tumor board decisions

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

A Correction to this article was published on 13 April 2019

This article has been updated

Abstract

Purpose

This study aimed to assess the therapeutic impact and diagnostic accuracy of 18F-DOPA PET/CT in patients with glioblastoma or brain metastases.

Methods

Patients with histologically proven glioblastoma or brain metastases were prospectively included in this monocentric clinical trial (IMOTEP). Patients were included either due to a clinical suspicion of relapse or to assess residual tumor infiltration after treatment. Multimodality brain MRI and 18F-DOPA PET were performed. Patients’ data were discussed during a Multidisciplinary Neuro-oncology Tumor Board (MNTB) meeting. The discussion was first based on clinical and MRI data, and an initial diagnosis and treatment plan were proposed. Secondly, a new discussion was conducted based on the overall imaging results, including 18F-DOPA PET. A second diagnosis and therapeutic plan were proposed. A retrospective and definitive diagnosis was obtained after a 3-month follow-up and considered as the reference standard.

Results

One hundred six cases were prospectively investigated by the MNTB. All patients with brain metastases (N = 41) had a clinical suspicion of recurrence. The addition of 18F-DOPA PET data changed the diagnosis and treatment plan in 39.0% and 17.1% of patients’ cases, respectively. Concerning patients with a suspicion of recurrent glioblastoma (N = 12), the implementation of 18F-DOPA PET changed the diagnosis and treatment plan in 33.3% of cases. In patients evaluated to assess residual glioblastoma infiltration after treatment (N = 53), 18F-DOPA PET data had a lower impact with only 5.7% (3/53) of diagnostic changes and 3.8% (2/53) of therapeutic plan changes. The definitive reference diagnosis was available in 98/106 patients. For patients with tumor recurrence suspicion, the adjunction of 18F-DOPA PET increased the Younden’s index from 0.44 to 0.53 in brain metastases and from 0.2 to 1.0 in glioblastoma, reflecting an increase in diagnostic accuracy.

Conclusion

18F-DOPA PET has a significant impact on the management of patients with a suspicion of brain tumor recurrence, either glioblastoma or brain metastases, but a low impact when used to evaluate the residual glioblastoma infiltration after a first-line radio-chemotherapy or second-line bevacizumab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 13 April 2019

    Jérôme Barriere was inadvertently missing in the original version of this article. He has participated to the study design, protocol writing and inclusion of a significant number of patients.

References

  1. Gavrilovic IT, Posner JB. Brain metastases: epidemiology and pathophysiology. J Neuro-Oncol. 2005;75:5–14.

    Article  Google Scholar 

  2. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan Detroit cancer surveillance system. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22:2865–72.

    Article  Google Scholar 

  3. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol (Berl). 2007;114:97–109.

    Article  Google Scholar 

  4. Young RM, Jamshidi A, Davis G, Sherman JH. Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med. 2015;3(9):121.

  5. Cavaliere R, Schiff D. Cerebral metastases--a therapeutic update. Nat Clin Pract Neurol. 2006;2:426–36.

    Article  PubMed  Google Scholar 

  6. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.

    Article  CAS  PubMed  Google Scholar 

  7. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–22.

    Article  CAS  PubMed  Google Scholar 

  8. Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, . Falini A, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 2014;15:e395-e403.

    Article  PubMed  Google Scholar 

  9. Gerstner ER, Sorensen AG, Jain RK, Batchelor TT. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr Opin Neurol. 2008;21:728–35.

    Article  PubMed  Google Scholar 

  10. Gerstner ER, Frosch MP, Batchelor TT. Diffusion magnetic resonance imaging detects pathologically confirmed, nonenhancing tumor progression in a patient with recurrent glioblastoma receiving bevacizumab. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:e91–3.

    Article  Google Scholar 

  11. Gerstner ER, Batchelor TT. Imaging and response criteria in gliomas. Curr Opin Oncol. 2010;22:598–603.

    Article  PubMed  Google Scholar 

  12. Cicone F, Minniti G, Romano A, Papa A, Scaringi C, Tavanti F, et al. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging. 2015;42:103–11.

    Article  CAS  PubMed  Google Scholar 

  13. Chen W, Silverman DHS. Advances in evaluation of primary brain tumors. Semin Nucl Med. 2008;38:240–50.

    Article  PubMed  Google Scholar 

  14. Ledezma CJ, Chen W, Sai V, Freitas B, Cloughesy T, Czernin J, et al. 18F-FDOPA PET/MRI fusion in patients with primary/recurrent gliomas: initial experience. Eur J Radiol. 2009;71:242–8.

    Article  PubMed  Google Scholar 

  15. Miyagawa T, Oku T, Uehara H, Desai R, Beattie B, Tjuvajev J, et al. “Facilitated” amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1998;18:500–9.

    Article  CAS  Google Scholar 

  16. Papin-Michault C, Bonnetaud C, Dufour M, Almairac F, Coutts M, Patouraux S, et al. Study of LAT1 expression in brain metastases: towards a better understanding of the results of positron emission tomography using amino acid tracers. PLoS One. 2016;11:e0157139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Youland RS, Kitange GJ, Peterson TE, Pafundi DH, Ramiscal JA, Pokorny JL, et al. The role of LAT1 in (18)F-DOPA uptake in malignant gliomas. J Neuro-Oncol. 2013;111:11–8.

    Article  CAS  Google Scholar 

  18. Yee RE, Cheng DW, Huang SC, Namavari M, Satyamurthy N, Barrio JR. Blood-brain barrier and neuronal membrane transport of 6-[18F]fluoro-L-DOPA. Biochem Pharmacol. 2001;62:1409–15.

    Article  CAS  PubMed  Google Scholar 

  19. Chen W. Clinical applications of PET in brain tumors. J Nucl Med Off Publ Soc Nucl Med. 2007;48:1468–81.

    Google Scholar 

  20. Calabria F, Chiaravalloti A, Di Pietro B, Grasso C, Schillaci O. Molecular imaging of brain tumors with 18F-DOPA PET and PET/CT. Nucl Med Commun. 2012;33:563–70.

    Article  PubMed  Google Scholar 

  21. Chen W, Silverman DHS, Delaloye S, Czernin J, Kamdar N, Pope W, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med Off Publ Soc Nucl Med. 2006;47:904–11.

    CAS  Google Scholar 

  22. Karunanithi S, Sharma P, Kumar A, Khangembam BC, Bandopadhyaya GP, Kumar R, et al. Comparative diagnostic accuracy of contrast-enhanced MRI and (18)F-FDOPA PET-CT in recurrent glioma. Eur Radiol. 2013;23:2628–35.

    Article  PubMed  Google Scholar 

  23. Walter F, Cloughesy T, Walter MA, Lai A, Nghiemphu P, Wagle N, et al. Impact of 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine PET/CT on managing patients with brain tumors: the referring physician’s perspective. J Nucl Med Off Publ Soc Nucl Med. 2012;53:393–8.

    CAS  Google Scholar 

  24. Lizarraga KJ, Allen-Auerbach M, Czernin J, DeSalles AAF, Yong WH, Phelps ME, et al. (18)F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med Off Publ Soc Nucl Med. 2014;55:30–6.

    CAS  Google Scholar 

  25. Galldiks N, Langen K-J, Holy R, Pinkawa M, Stoffels G, Nolte KW, et al. Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J Nucl Med Off Publ Soc Nucl Med. 2012;53:1048–57.

    CAS  Google Scholar 

  26. Jansen NL, Suchorska B, Schwarz SB, Eigenbrod S, Lutz J, Graute V, et al. [18F]fluoroethyltyrosine-positron emission tomography-based therapy monitoring after stereotactic iodine-125 brachytherapy in patients with recurrent high-grade glioma. Mol Imaging. 2013;12:137–47.

    Article  CAS  PubMed  Google Scholar 

  27. Galldiks N, Rapp M, Stoffels G, Fink GR, Shah NJ, Coenen HH, et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging. 2013;40:22–33.

    Article  CAS  PubMed  Google Scholar 

  28. Albert NL, Winkelmann I, Suchorska B, Wenter V, Schmid-Tannwald C, Mille E, et al. Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans. Eur J Nucl Med Mol Imaging. 2016;43:1105–14.

    Article  PubMed  Google Scholar 

  29. Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology. 2016;18:1199–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sala Q, Metellus P, Taieb D, Kaphan E, Figarella-Branger D, Guedj E. 18F-DOPA, a clinically available PET tracer to study brain inflammation? Clin Nucl Med. 2014;39:e283–5.

    Article  PubMed  Google Scholar 

  31. Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel M, et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging. 2015;42:685–95.

    Article  CAS  PubMed  Google Scholar 

  32. Kebir S, Fimmers R, Galldiks N, Schäfer N, Mack F, Schaub C, et al. Late Pseudoprogression in glioblastoma: diagnostic value of dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22:2190–6.

    Article  CAS  Google Scholar 

  33. Takenaka S, Asano Y, Shinoda J, Nomura Y, Yonezawa S, Miwa K, et al. Comparison of (11)C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol Med Chir (Tokyo). 2014;54:280–9.

    Article  Google Scholar 

  34. Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol. 2013;34:944–50. S1-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Galldiks N, Law I, Pope WB, Arbizu J, Langen K-J. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy. NeuroImage Clin. 2017;13:386–94.

    Article  PubMed  Google Scholar 

  36. Wyss M, Hofer S, Bruehlmeier M, Hefti M, Uhlmann C, Bärtschi E, et al. Early metabolic responses in temozolomide treated low-grade glioma patients. J Neuro-Oncol. 2009;95:87–93.

    Article  CAS  Google Scholar 

  37. Borbély K, Nyáry I, Tóth M, Ericson K, Gulyás B. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci. 2006;246:85–94.

    Article  CAS  PubMed  Google Scholar 

  38. Stockhammer F, Plotkin M, Amthauer H, van Landeghem FKH, Woiciechowsky C. Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-enhancing gliomas. J Neuro-Oncol. 2008;88:205–10.

    Article  CAS  Google Scholar 

  39. Schiepers C, Chen W, Cloughesy T, Dahlbom M, Huang S-C. 18F-FDOPA kinetics in brain tumors. J Nucl Med Off Publ Soc Nucl Med. 2007;48:1651–61.

    Google Scholar 

  40. Doudet DJ, Miyake H, Finn RT, McLellan CA, Aigner TG, Wan RQ, et al. 6-18F-L-dopa imaging of the dopamine neostriatal system in normal and clinically normal MPTP-treated rhesus monkeys. Exp Brain Res. 1989;78:69–80.

    Article  CAS  PubMed  Google Scholar 

  41. Santhanam P, Taïeb D. Role of (18) F-FDOPA PET/CT imaging in endocrinology. Clin Endocrinol. 2014;81:789–98.

    Article  CAS  Google Scholar 

  42. Timmers HJLM, Hadi M, Carrasquillo JA, Chen CC, Martiniova L, Whatley M, et al. The effects of carbidopa on uptake of 6-18F-Fluoro-l-DOPA in PET of pheochromocytoma and extraadrenal abdominal paraganglioma. J Nucl Med. 2007;48:1599–606.

    Article  CAS  PubMed  Google Scholar 

  43. Beuthien-Baumann B, Bredow J, Burchert W, Füchtner F, Bergmann R, Alheit H-D, et al. 3-O-methyl-6-[18F]fluoro-L-DOPA and its evaluation in brain tumour imaging. Eur J Nucl Med Mol Imaging. 2003;30:1004–8.

    Article  CAS  PubMed  Google Scholar 

  44. Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:1963–72.

    Article  Google Scholar 

  45. Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A, et al. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging. 2017;44:1155–64.

    Article  CAS  PubMed  Google Scholar 

  46. Verger A, Stoffels G, Bauer EK, Lohmann P, Blau T, Fink GR, et al. Static and dynamic18F-FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging. 2018;45:443–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Sandrine CHELI for her help in protocol drafting and editing, Renaud Schiappa for database conception and management and Maeva MAURIN for trial management.

Funding

This institutional trial is promoted by the Centre Antoine-Lacassagne. The regional institution Canceropôle PACA provided a subvention to the Centre Antoine-Lacassagne to promote research on brain metastases. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Humbert.

Ethics declarations

Conflict of interest

All authors of this manuscript declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humbert, O., Bourg, V., Mondot, L. et al. 18F-DOPA PET/CT in brain tumors: impact on multidisciplinary brain tumor board decisions. Eur J Nucl Med Mol Imaging 46, 558–568 (2019). https://doi.org/10.1007/s00259-018-4240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-018-4240-8

Keywords

Navigation