18F-DOPA PET/CT in brain tumors: impact on multidisciplinary brain tumor board decisions

  • Olivier HumbertEmail author
  • Véronique Bourg
  • Lydiane Mondot
  • Jocelyn Gal
  • Pierre-Yves Bondiau
  • Denys Fontaine
  • Esma Saada-Bouzid
  • Marie Paquet
  • David Chardin
  • Fabien Almairac
  • Fanny Vandenbos
  • Jacques Darcourt
Original Article



This study aimed to assess the therapeutic impact and diagnostic accuracy of 18F-DOPA PET/CT in patients with glioblastoma or brain metastases.


Patients with histologically proven glioblastoma or brain metastases were prospectively included in this monocentric clinical trial (IMOTEP). Patients were included either due to a clinical suspicion of relapse or to assess residual tumor infiltration after treatment. Multimodality brain MRI and 18F-DOPA PET were performed. Patients’ data were discussed during a Multidisciplinary Neuro-oncology Tumor Board (MNTB) meeting. The discussion was first based on clinical and MRI data, and an initial diagnosis and treatment plan were proposed. Secondly, a new discussion was conducted based on the overall imaging results, including 18F-DOPA PET. A second diagnosis and therapeutic plan were proposed. A retrospective and definitive diagnosis was obtained after a 3-month follow-up and considered as the reference standard.


One hundred six cases were prospectively investigated by the MNTB. All patients with brain metastases (N = 41) had a clinical suspicion of recurrence. The addition of 18F-DOPA PET data changed the diagnosis and treatment plan in 39.0% and 17.1% of patients’ cases, respectively. Concerning patients with a suspicion of recurrent glioblastoma (N = 12), the implementation of 18F-DOPA PET changed the diagnosis and treatment plan in 33.3% of cases. In patients evaluated to assess residual glioblastoma infiltration after treatment (N = 53), 18F-DOPA PET data had a lower impact with only 5.7% (3/53) of diagnostic changes and 3.8% (2/53) of therapeutic plan changes. The definitive reference diagnosis was available in 98/106 patients. For patients with tumor recurrence suspicion, the adjunction of 18F-DOPA PET increased the Younden’s index from 0.44 to 0.53 in brain metastases and from 0.2 to 1.0 in glioblastoma, reflecting an increase in diagnostic accuracy.


18F-DOPA PET has a significant impact on the management of patients with a suspicion of brain tumor recurrence, either glioblastoma or brain metastases, but a low impact when used to evaluate the residual glioblastoma infiltration after a first-line radio-chemotherapy or second-line bevacizumab.


18F-DOPA PET Brain tumours Amino acid Therapeutic impact 



We thank Sandrine CHELI for her help in protocol drafting and editing, Renaud Schiappa for database conception and management and Maeva MAURIN for trial management.


This institutional trial is promoted by the Centre Antoine-Lacassagne. The regional institution Canceropôle PACA provided a subvention to the Centre Antoine-Lacassagne to promote research on brain metastases. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

Conflict of interest

All authors of this manuscript declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Gavrilovic IT, Posner JB. Brain metastases: epidemiology and pathophysiology. J Neuro-Oncol. 2005;75:5–14.CrossRefGoogle Scholar
  2. 2.
    Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the metropolitan Detroit cancer surveillance system. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22:2865–72.CrossRefGoogle Scholar
  3. 3.
    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol (Berl). 2007;114:97–109.CrossRefGoogle Scholar
  4. 4.
    Young RM, Jamshidi A, Davis G, Sherman JH. Current trends in the surgical management and treatment of adult glioblastoma. Ann Transl Med. 2015;3(9):121.Google Scholar
  5. 5.
    Cavaliere R, Schiff D. Cerebral metastases--a therapeutic update. Nat Clin Pract Neurol. 2006;2:426–36.CrossRefGoogle Scholar
  6. 6.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352:987–96.CrossRefGoogle Scholar
  7. 7.
    Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370:709–22.CrossRefGoogle Scholar
  8. 8.
    Weller M, van den Bent M, Hopkins K, Tonn JC, Stupp R, . Falini A, et al. EANO guideline for the diagnosis and treatment of anaplastic gliomas and glioblastoma. Lancet Oncol 2014;15:e395-e403.CrossRefGoogle Scholar
  9. 9.
    Gerstner ER, Sorensen AG, Jain RK, Batchelor TT. Advances in neuroimaging techniques for the evaluation of tumor growth, vascular permeability, and angiogenesis in gliomas. Curr Opin Neurol. 2008;21:728–35.CrossRefGoogle Scholar
  10. 10.
    Gerstner ER, Frosch MP, Batchelor TT. Diffusion magnetic resonance imaging detects pathologically confirmed, nonenhancing tumor progression in a patient with recurrent glioblastoma receiving bevacizumab. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:e91–3.CrossRefGoogle Scholar
  11. 11.
    Gerstner ER, Batchelor TT. Imaging and response criteria in gliomas. Curr Opin Oncol. 2010;22:598–603.CrossRefGoogle Scholar
  12. 12.
    Cicone F, Minniti G, Romano A, Papa A, Scaringi C, Tavanti F, et al. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging. 2015;42:103–11.CrossRefGoogle Scholar
  13. 13.
    Chen W, Silverman DHS. Advances in evaluation of primary brain tumors. Semin Nucl Med. 2008;38:240–50.CrossRefGoogle Scholar
  14. 14.
    Ledezma CJ, Chen W, Sai V, Freitas B, Cloughesy T, Czernin J, et al. 18F-FDOPA PET/MRI fusion in patients with primary/recurrent gliomas: initial experience. Eur J Radiol. 2009;71:242–8.CrossRefGoogle Scholar
  15. 15.
    Miyagawa T, Oku T, Uehara H, Desai R, Beattie B, Tjuvajev J, et al. “Facilitated” amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1998;18:500–9.CrossRefGoogle Scholar
  16. 16.
    Papin-Michault C, Bonnetaud C, Dufour M, Almairac F, Coutts M, Patouraux S, et al. Study of LAT1 expression in brain metastases: towards a better understanding of the results of positron emission tomography using amino acid tracers. PLoS One. 2016;11:e0157139.CrossRefGoogle Scholar
  17. 17.
    Youland RS, Kitange GJ, Peterson TE, Pafundi DH, Ramiscal JA, Pokorny JL, et al. The role of LAT1 in (18)F-DOPA uptake in malignant gliomas. J Neuro-Oncol. 2013;111:11–8.CrossRefGoogle Scholar
  18. 18.
    Yee RE, Cheng DW, Huang SC, Namavari M, Satyamurthy N, Barrio JR. Blood-brain barrier and neuronal membrane transport of 6-[18F]fluoro-L-DOPA. Biochem Pharmacol. 2001;62:1409–15.CrossRefGoogle Scholar
  19. 19.
    Chen W. Clinical applications of PET in brain tumors. J Nucl Med Off Publ Soc Nucl Med. 2007;48:1468–81.Google Scholar
  20. 20.
    Calabria F, Chiaravalloti A, Di Pietro B, Grasso C, Schillaci O. Molecular imaging of brain tumors with 18F-DOPA PET and PET/CT. Nucl Med Commun. 2012;33:563–70.CrossRefGoogle Scholar
  21. 21.
    Chen W, Silverman DHS, Delaloye S, Czernin J, Kamdar N, Pope W, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med Off Publ Soc Nucl Med. 2006;47:904–11.Google Scholar
  22. 22.
    Karunanithi S, Sharma P, Kumar A, Khangembam BC, Bandopadhyaya GP, Kumar R, et al. Comparative diagnostic accuracy of contrast-enhanced MRI and (18)F-FDOPA PET-CT in recurrent glioma. Eur Radiol. 2013;23:2628–35.CrossRefGoogle Scholar
  23. 23.
    Walter F, Cloughesy T, Walter MA, Lai A, Nghiemphu P, Wagle N, et al. Impact of 3,4-dihydroxy-6-18F-fluoro-L-phenylalanine PET/CT on managing patients with brain tumors: the referring physician’s perspective. J Nucl Med Off Publ Soc Nucl Med. 2012;53:393–8.Google Scholar
  24. 24.
    Lizarraga KJ, Allen-Auerbach M, Czernin J, DeSalles AAF, Yong WH, Phelps ME, et al. (18)F-FDOPA PET for differentiating recurrent or progressive brain metastatic tumors from late or delayed radiation injury after radiation treatment. J Nucl Med Off Publ Soc Nucl Med. 2014;55:30–6.Google Scholar
  25. 25.
    Galldiks N, Langen K-J, Holy R, Pinkawa M, Stoffels G, Nolte KW, et al. Assessment of treatment response in patients with glioblastoma using O-(2-18F-fluoroethyl)-L-tyrosine PET in comparison to MRI. J Nucl Med Off Publ Soc Nucl Med. 2012;53:1048–57.Google Scholar
  26. 26.
    Jansen NL, Suchorska B, Schwarz SB, Eigenbrod S, Lutz J, Graute V, et al. [18F]fluoroethyltyrosine-positron emission tomography-based therapy monitoring after stereotactic iodine-125 brachytherapy in patients with recurrent high-grade glioma. Mol Imaging. 2013;12:137–47.CrossRefGoogle Scholar
  27. 27.
    Galldiks N, Rapp M, Stoffels G, Fink GR, Shah NJ, Coenen HH, et al. Response assessment of bevacizumab in patients with recurrent malignant glioma using [18F]Fluoroethyl-L-tyrosine PET in comparison to MRI. Eur J Nucl Med Mol Imaging. 2013;40:22–33.CrossRefGoogle Scholar
  28. 28.
    Albert NL, Winkelmann I, Suchorska B, Wenter V, Schmid-Tannwald C, Mille E, et al. Early static (18)F-FET-PET scans have a higher accuracy for glioma grading than the standard 20-40 min scans. Eur J Nucl Med Mol Imaging. 2016;43:1105–14.CrossRefGoogle Scholar
  29. 29.
    Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response assessment in neuro-oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology. 2016;18:1199–208.CrossRefGoogle Scholar
  30. 30.
    Sala Q, Metellus P, Taieb D, Kaphan E, Figarella-Branger D, Guedj E. 18F-DOPA, a clinically available PET tracer to study brain inflammation? Clin Nucl Med. 2014;39:e283–5.CrossRefGoogle Scholar
  31. 31.
    Galldiks N, Dunkl V, Stoffels G, Hutterer M, Rapp M, Sabel M, et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur J Nucl Med Mol Imaging. 2015;42:685–95.CrossRefGoogle Scholar
  32. 32.
    Kebir S, Fimmers R, Galldiks N, Schäfer N, Mack F, Schaub C, et al. Late Pseudoprogression in glioblastoma: diagnostic value of dynamic O-(2-[18F]fluoroethyl)-L-tyrosine PET. Clin Cancer Res Off J Am Assoc Cancer Res. 2016;22:2190–6.CrossRefGoogle Scholar
  33. 33.
    Takenaka S, Asano Y, Shinoda J, Nomura Y, Yonezawa S, Miwa K, et al. Comparison of (11)C-methionine, (11)C-choline, and (18)F-fluorodeoxyglucose-PET for distinguishing glioma recurrence from radiation necrosis. Neurol Med Chir (Tokyo). 2014;54:280–9.CrossRefGoogle Scholar
  34. 34.
    Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol. 2013;34:944–50. S1-11.CrossRefGoogle Scholar
  35. 35.
    Galldiks N, Law I, Pope WB, Arbizu J, Langen K-J. The use of amino acid PET and conventional MRI for monitoring of brain tumor therapy. NeuroImage Clin. 2017;13:386–94.CrossRefGoogle Scholar
  36. 36.
    Wyss M, Hofer S, Bruehlmeier M, Hefti M, Uhlmann C, Bärtschi E, et al. Early metabolic responses in temozolomide treated low-grade glioma patients. J Neuro-Oncol. 2009;95:87–93.CrossRefGoogle Scholar
  37. 37.
    Borbély K, Nyáry I, Tóth M, Ericson K, Gulyás B. Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci. 2006;246:85–94.CrossRefGoogle Scholar
  38. 38.
    Stockhammer F, Plotkin M, Amthauer H, van Landeghem FKH, Woiciechowsky C. Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-enhancing gliomas. J Neuro-Oncol. 2008;88:205–10.CrossRefGoogle Scholar
  39. 39.
    Schiepers C, Chen W, Cloughesy T, Dahlbom M, Huang S-C. 18F-FDOPA kinetics in brain tumors. J Nucl Med Off Publ Soc Nucl Med. 2007;48:1651–61.Google Scholar
  40. 40.
    Doudet DJ, Miyake H, Finn RT, McLellan CA, Aigner TG, Wan RQ, et al. 6-18F-L-dopa imaging of the dopamine neostriatal system in normal and clinically normal MPTP-treated rhesus monkeys. Exp Brain Res. 1989;78:69–80.CrossRefGoogle Scholar
  41. 41.
    Santhanam P, Taïeb D. Role of (18) F-FDOPA PET/CT imaging in endocrinology. Clin Endocrinol. 2014;81:789–98.CrossRefGoogle Scholar
  42. 42.
    Timmers HJLM, Hadi M, Carrasquillo JA, Chen CC, Martiniova L, Whatley M, et al. The effects of carbidopa on uptake of 6-18F-Fluoro-l-DOPA in PET of pheochromocytoma and extraadrenal abdominal paraganglioma. J Nucl Med. 2007;48:1599–606.CrossRefGoogle Scholar
  43. 43.
    Beuthien-Baumann B, Bredow J, Burchert W, Füchtner F, Bergmann R, Alheit H-D, et al. 3-O-methyl-6-[18F]fluoro-L-DOPA and its evaluation in brain tumour imaging. Eur J Nucl Med Mol Imaging. 2003;30:1004–8.CrossRefGoogle Scholar
  44. 44.
    Wen PY, Macdonald DR, Reardon DA, Cloughesy TF, Sorensen AG, Galanis E, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28:1963–72.CrossRefGoogle Scholar
  45. 45.
    Lopci E, Riva M, Olivari L, Raneri F, Soffietti R, Piccardo A, et al. Prognostic value of molecular and imaging biomarkers in patients with supratentorial glioma. Eur J Nucl Med Mol Imaging. 2017;44:1155–64.CrossRefGoogle Scholar
  46. 46.
    Verger A, Stoffels G, Bauer EK, Lohmann P, Blau T, Fink GR, et al. Static and dynamic18F-FET PET for the characterization of gliomas defined by IDH and 1p/19q status. Eur J Nucl Med Mol Imaging. 2018;45:443–51.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Olivier Humbert
    • 1
    • 2
    • 3
    Email author
  • Véronique Bourg
    • 4
  • Lydiane Mondot
    • 5
  • Jocelyn Gal
    • 6
  • Pierre-Yves Bondiau
    • 7
  • Denys Fontaine
    • 8
  • Esma Saada-Bouzid
    • 9
  • Marie Paquet
    • 1
    • 2
  • David Chardin
    • 1
  • Fabien Almairac
    • 8
  • Fanny Vandenbos
    • 10
  • Jacques Darcourt
    • 1
    • 2
  1. 1.Department of Nuclear MedicineCentre Antoine-Lacassagne, Université Côte d’Azur (UCA)NiceFrance
  2. 2.TIRO-UMR E 4320UCA/CEANiceFrance
  3. 3.Clinical Research and Innovation OfficeUCANiceFrance
  4. 4.Department of NeurologyPasteur 2 University Hospital, UCANiceFrance
  5. 5.Department of NeuroradiologyPasteur 2 University Hospital, UCANiceFrance
  6. 6.Department of BiostatisticsCentre Antoine-Lacassagne, UCANiceFrance
  7. 7.Department of RadiotherapyCentre Antoine-Lacassagne, UCANiceFrance
  8. 8.Department of NeurosurgeryPasteur 2 University Hospital, UCANiceFrance
  9. 9.Department of Medical OncologyCentre Antoine-Lacassagne, UCANiceFrance
  10. 10.Central Laboratory of PathologyPasteur I University Hospital, UCANiceFrance

Personalised recommendations