Skip to main content

Advertisement

Log in

99mTc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

99mTc-Annexin A5 has been used as a molecular imaging probe for the visualization, characterization and measurement of apoptosis. In an effort to define the quantitative 99mTc-annexin A5 uptake criteria that best predict tumor response to treatment, we performed a systematic review and meta-analysis of the results of all clinical imaging trials found in the literature or publicly available databases.

Methods

Included in this review were 17 clinical trials investigating quantitative 99mTc-annexin A5 (qAnx5) imaging using different parameters in cancer patients before and after the first course of chemotherapy and/or radiation therapy. Qualitative assessment of the clinical studies for diagnostic accuracy was performed using the QUADAS-2 criteria. Of these studies, five prospective single-center clinical trials (92 patients in total) were included in the meta-analysis after exclusion of one multicenter clinical trial due to heterogeneity. Pooled positive predictive values (PPV) and pooled negative predictive values (NPV) (with 95 % CI) were calculated using Meta-Disc software version 1.4.

Results

Absolute quantification and/or relative quantification of 99mTc-annexin A5 uptake were performed at baseline and after the start of treatment. Various quantitative parameters have been used for the calculation of 99mTc-annexin A5 tumor uptake and delta (Δ) tumor changes post-treatment compared to baseline including: tumor-to-background ratio (TBR), ΔTBR, tumor-to-noise ratio, relative tumor ratio (TR), ΔTR, standardized tumor uptake ratio (STU), ΔSTU, maximum count per pixel within the tumor volume (Cmax), Cmax%, absolute ΔU and percentage (ΔU%), maximum ΔU counts, semiquantitative visual scoring, percent injected dose (%ID) and %ID/cm3. Clinical trials investigating qAnx5 imaging have included patients with lung cancer, lymphoma, breast cancer, head and neck cancer and other less common tumor types. In two phase I/II single-center clinical trials, an increase of ≥25 % in uptake following treatment was considered a significant threshold for an apoptotic tumor response (partial response, complete response). In three other phase I/II clinical trials, increases of ≥28 %, ≥42 % and ≥47 % in uptake following treatment were found to be the mean cut-off levels in responders. In a phase II/III multicenter clinical trial, an increase of ≥23 % in uptake following treatment was found to be the minimum cut-off level for a tumor response. In one clinical trial, no significant difference in 99mTc-annexin A5 uptake in terms of %ID was found in healthy tissues after chemotherapy compared to baseline. In two other clinical trials, intraobserver and interobserver measurements of 99mTc-annexin A5 tumor uptake were found to be reproducible (mean difference <5 %, kappa =  0.90 and 0.82, respectively) and to be highly correlated with treatment outcome (Spearman r = 0.99, p < 0.0001). The meta-analysis demonstrated a pooled positive PPV of 100 % (95 % CI 92 – 100 %) and a pooled NPV of 70 % (95 % CI 55 – 82 %) for prediction of a tumor response after the first course of chemotherapy and/or radiotherapy in terms of ΔU%. In a symmetric sROC analysis, the AUC was 0.919 and the Q* index was 85.21 %.

Conclusion

Quantitative 99mTc-annexin A5 imaging has been investigated in clinical trials for the assessment of apoptotic tumor responses. This meta-analysis showed a high pooled PPV and a moderate pooled NPV with ΔU cut-off values ranging between 20 % and 30 %. Standardization of quantification and harmonization of results are required for high-quality clinical research. A standardized uptake value score (SUV, ΔSUV) using quantitative SPECT/CT imaging may be a promising approach to the simple, reproducible and semiquantitative assessment of apoptotic tumor changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lockshin RA, Osborne B, Zakeri Z. Cell death in the third millennium. Cell Death Differ. 2000;7(1):2–7. Editorial

    Article  CAS  PubMed  Google Scholar 

  2. Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy. Cancer. 1994;73(8):2013–26.

    Article  CAS  PubMed  Google Scholar 

  3. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the nomenclature committee on cell death 2012. Cell Death Differ. 2012;19(1):107–20. Review.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res. 2000;256(1):42–9. Review.

    Article  CAS  PubMed  Google Scholar 

  5. Staunton MJ, Gaffney EF. Tumor type is a determinant of susceptibility to apoptosis. Am J Clin Pathol. 1995;103(3):300–7.

    CAS  PubMed  Google Scholar 

  6. van Genderen HO, Kenis H, Hofstra L, Narula J, Reutelingsperger CP. Extracellular annexin A5: functions of phosphatidylserine-binding and two-dimensional crystallization. Biochim Biophys Acta. 2008;1783(6):953–63.

  7. Martin SJ, Reutelingsperger CP, McGahon AJ, Rader JA, van Schie RC, Laface DM, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl 2 and Abl. J Exp Med. 1995;182(5):1545–56.

  8. Boersma HH, Kietselaer BL, Stolk LM, Bennaghmouch A, Hofstra L, Narula J, et al. Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med. 2005;46(12):2035–50. Review.

    CAS  PubMed  Google Scholar 

  9. Schaper FL, Reutelingsperger CP. 99mTc-HYNIC-annexin A5 in oncology: evaluating efficacy of anti-cancer therapies. Cancers (Basel). 2013;5(2):550–68.

    Article  CAS  Google Scholar 

  10. Mankoff DA, Pryma DA, Clark AS. Molecular imaging biomarkers for oncology clinical trials. J Nucl Med. 2014;55(4):525–8.

    Article  CAS  PubMed  Google Scholar 

  11. Blankenberg FG, Tait JF, Strauss HW. Apoptotic cell death: its implications for imaging in the next millennium. Eur J Nucl Med. 2000;27(3):359–67. Review.

    Article  CAS  PubMed  Google Scholar 

  12. Green AM, Steinmetz ND. Monitoring apoptosis in real time. Cancer J. 2002;8(2):82–92. Review.

    Article  PubMed  Google Scholar 

  13. Maffione AM, Grassetto G, Chondrogiannis S, Colletti PM, Rubello D. Quantitative PET factors predictive of the response to therapy in solid tumors: which is the best? Clin Nucl Med. 2014;39(2):160–3.

    PubMed  Google Scholar 

  14. Bailey DL, Willowson KP. An evidence-based review of quantitative SPECT imaging and potential clinical applications. J Nucl Med. 2013;54(1):83–9.

    Article  PubMed  Google Scholar 

  15. Rigo P, Paulus P, Kaschten BJ, Hustinx R, Bury T, Jerusalem G, et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med. 1996;23(12):1641–74. Review.

    Article  CAS  PubMed  Google Scholar 

  16. Jerusalem G, Belhocine TZ. Metabolic monitoring of chemosensitivity with 18FDG PET. Methods Mol Med. 2005;111:417–40.

    CAS  PubMed  Google Scholar 

  17. Marsden PK. Quantification in PET: what is it? Can we do it? Do we need it? Nucl Med Commun. 2004;25(7):635–6.

    Article  PubMed  Google Scholar 

  18. Ritt P, Vija H, Hornegger J, Kuwert T. Absolute quantification in SPECT. Eur J Nucl Med Mol Imaging. 2011;38 Suppl 1:S69–77.

    Article  PubMed  Google Scholar 

  19. Atuegwu NC, Gore JC, Yankeelov TE. The integration of quantitative multi-modality imaging data into mathematical models of tumors. Phys Med Biol. 2010;55(9):2429–49.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Takei T, Kuge Y, Zhao S, Sato M, Strauss HW, Blankenberg FG, et al. Time course of apoptotic tumor response after a single dose of chemotherapy: comparison with 99mTc-annexin V uptake and histologic findings in an experimental model. J Nucl Med. 2004;45(12):2083–7.

    CAS  PubMed  Google Scholar 

  21. King M, Member S, Boening G, Baker S, Steinmetz N. Study of relative quantitation of Tc-99m annexin localization in pulmonary nodules using an anthropomorphic phantom. IEEE Trans Nucl Sci. 2004;51(5):2606–11.

    Article  Google Scholar 

  22. Belhocine T, Steinmetz N, Hustinx R, Bartsch P, Jerusalem G, Seidel L, et al. Increased uptake of the apoptosis-imaging agent (99m)Tc recombinant human Annexin V in human tumors after one course of chemotherapy as a predictor of tumor response and patient prognosis. Clin Cancer Res. 2002;8(9):2766–74.

    CAS  PubMed  Google Scholar 

  23. Belhocine T.-Z. Nouvelles technologies en oncologie nucleaire. Doctoral Thesis. Dissertation. University of Liège (Ulg), Liège, Belgium. 2002. 130 p.

  24. Steinmetz N. NAS 2020 European Multicenter Trials. North American Scientific Release October 2003.

  25. Steinmetz N. North American Scientific Releases updated observations from European clinical trials of Tc-99m Hynic-annexin. Theseus Imaging Corporation Inc. Presented at the 51st Annual Meeting of the Society of Nuclear Medicine, 19–23 June 2004, Philadelphia.

  26. Vermeersch H, Loose D, Lahorte C, Mervillie K, Dierckx R, Steinmetz N, et al. 99mTc-HYNIC annexin-V imaging of primary head and neck carcinoma. Nucl Med Commun. 2004;25(3):259–63.

    Article  PubMed  Google Scholar 

  27. Rottey S, Slegers G, Van Belle S, Goethals I, Van de Wiele C. Sequential 99mTc-hydrazinonicotinamide-annexin V imaging for predicting response to chemotherapy. J Nucl Med. 2006;47(11):1813–8.

    CAS  PubMed  Google Scholar 

  28. Rottey S, Loose D, Vakaet L, Lahorte C, Vermeersch H, Van Belle S, et al. 99mTc-HYNIC annexin-V imaging of tumors and its relationship to response to radiotherapy and/or chemotherapy. Q J Nucl Med Mol Imaging. 2007;51(2):182–8.

    CAS  PubMed  Google Scholar 

  29. Rottey S. 99mTc-HYNIC Annexin-V for monitoring response to chemotherapy: methodology and feasibility studies. Doctoral Thesis. Dissertation. University of Gent (AZ UGent). Gent, Belgium. 2007. 139 p.

  30. Rottey S, Van den Bossche B, Slegers G, Van Belle S, van de Wiele C. Influence of chemotherapy on the biodistribution of [99mTc]hydrazinonicotinamide annexin V in cancer patients. Q J Nucl Med Mol Imaging. 2009;53(2):127–32.

    CAS  PubMed  Google Scholar 

  31. Kartachova M, Haas RL, Olmos RA, Hoebers FJ, van Zandwijk N, Verheij M. In vivo imaging of apoptosis by 99mTc-annexin V scintigraphy: visual analysis in relation to treatment response. Radiother Oncol. 2004;72(3):333–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kartachova M, van Zandwijk N, Burgers S, van Tinteren H, Verheij M, Valdés Olmos RA. Prognostic significance of 99mTc Hynic-rh-annexin V scintigraphy during platinum-based chemotherapy in advanced lung cancer. J Clin Oncol. 2007;25(18):2534–9.

    Article  CAS  PubMed  Google Scholar 

  33. Kartachova MS. Imaging apoptosis in malignancies. Doctoral Thesis. Dissertation. University of Amsterdam (AMC-UvA). Amsterdam, The Netherlands. 2007. 151 p.

  34. Kartachova MS, Valdés Olmos RA, Haas RL, Hoebers FJ, van Herk M, Verheij M. 99mTc-HYNIC-rh-annexin-V scintigraphy: visual and quantitative evaluation of early treatment-induced apoptosis to predict treatment outcome. Nucl Med Commun. 2008;29(1):39–44.

    Article  PubMed  Google Scholar 

  35. Haas RL, de Jong D, Valdés Olmos RA, Hoefnagel CA, van den Heuvel I, Zerp SF, et al. In vivo imaging of radiation-induced apoptosis in follicular lymphoma patients. Int J Radiat Oncol Biol Phys. 2004;59(3):782–7.

    Article  PubMed  Google Scholar 

  36. Hoebers FJP. Prognostic factors and predictive tests in the treatment of head and neck squamous cell carcinoma. Doctoral Thesis. Dissertation. University of Amsterdam (AMC-UvA). Amsterdam, The Netherlands. 2007. 160 p.

  37. Hoebers FJ, Kartachova M, de Bois J, van den Brekel MW, van Tinteren H, van Herk M, et al. 99mTc Hynic-rh-annexin V scintigraphy for in vivo imaging of apoptosis in patients with head and neck cancer treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging. 2008;35(3):509–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Loose D, Vermeersch H, De Vos F, Deron P, Slegers G, Van de Wiele C. Prognostic value of 99mTc-HYNIC annexin-V imaging in squamous cell carcinoma of the head and neck. Eur J Nucl Med Mol Imaging. 2008;35(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  39. Vermeersch H, Ham H, Rottey S, Lahorte C, Corsetti F, Dierckx R, et al. Intraobserver, interobserver, and day-to-day reproducibility of quantitative 99mTc-HYNIC annexin-V imaging in head and neck carcinoma. Cancer Biother Radiopharm. 2004;19(2):205–10.

    Article  CAS  PubMed  Google Scholar 

  40. Steinmetz N. Theseus Imaging Corporation Inc. Clinical study protocol NAS-2021-21-23-01. Phase II/III study of technetium 99mTc-HYNIC-rh-Annexin V for imaging of apoptosis in patients with non-small-cell lung cancer. Version 1.2, May 2, 2002. Released 28 May 2002.

  41. Green AM, Steinmetz ND. Theseus Imaging Corporation Inc. NSCLC Investigator Group. Correlation of biodistribution changes of 99mTc-Hynic-rh-annexin V before and after the initial dose of chemotherapy for non-small cell lung cancer with subsequent patient response. Presented at the Annual Congress of the EANM, 5–8 September 2004, Helsinki. Poster 250.

  42. Yang TJ, Haimovitz-Friedman A, Verheij M. Anticancer therapy and apoptosis imaging. Exp Oncol. 2012;34(3):269–76. Review.

    PubMed  Google Scholar 

  43. Van de Wiele C, Lahorte C, Vermeersch H, Loose D, Mervillie K, Steinmetz ND, et al. Quantitative tumor apoptosis imaging using technetium-99m-HYNIC annexin V single photon emission computed tomography. J Clin Oncol. 2003;21(18):3483–7.

    Article  PubMed  Google Scholar 

  44. Vermeersch H, Mervillie K, Lahorte C, Loose D, Dierck RA, Steinmetz N, et al. Relationship of 99mTc-HYNIC annexin V uptake to microvessel density, FasL and MMP-9 expression, and the number of tumour-infiltrating lymphocytes in head and neck carcinoma. Eur J Nucl Med Mol Imaging. 2004;31(7):1016–21.

    Article  CAS  PubMed  Google Scholar 

  45. Kurihara H, Yang DJ, Cristofanilli M, Erwin WD, Yu DF, Kohanim S, et al. Imaging and dosimetry of 99mTc EC annexin V: preliminary clinical study targeting apoptosis in breast tumors. Appl Radiat Isot. 2008;66(9):1175–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Zamora J, Abraira V, Muriel A, Khan K, Coomarasamy A. Meta-DiSc: a software for meta-analysis of test accuracy data. BMC Med Res Methodol. 2006;6:31.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. Review.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Whiting P, Rutjes A, Westwood M, Mallett S, Leeflang M, Reitsma H, et al. Updating QUADAS: evidence to inform the development of QUADAS-2. 2010. http://www.bristol.ac.uk/media-library/sites/quadas/migrated/documents/quadas2reportv4.pdf. Accessed 9 August 2015.

  50. Sterne JAC, Egger M, Moher D, editors. Chapter 10: Addressing reporting biases. In: Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Intervention. Version 5.1.0 (updated March 2011). The Cochrane Collaboration, 2011. www.cochrane-handbook.org. Accessed 9 August 2015.

  51. Weber WA. Assessing tumor response to therapy. J Nucl Med. 2009;50 Suppl 1:1S–10S.

    Article  CAS  PubMed  Google Scholar 

  52. Costelloe CM, Chuang HH, Madewell JE, Ueno NT. Cancer response criteria and bone metastases: RECIST 1.1, MDA and PERCIST. J Cancer. 2010;1:80–92.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45(2):228–47.

    Article  CAS  PubMed  Google Scholar 

  54. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma AA, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. Eur J Cancer. 1999;35(13):1773–82.

    Article  CAS  PubMed  Google Scholar 

  55. Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med. 2009;50 Suppl 1:122S–150S.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Belhocine TZ, Blankenberg FG. The imaging of apoptosis with the radiolabelled annexin A5: a new tool in translational research. Curr Clin Pharmacol. 2006;1(2):129–37. Review.

    Article  CAS  PubMed  Google Scholar 

  57. Tait JF, Smith C, Levashova Z, Patel B, Blankenberg FG, Vanderheyden JL. Improved detection of cell death in vivo with annexin V radiolabeled by site-specific methods. J Nucl Med. 2006;47(9):1546–53.

    CAS  PubMed  Google Scholar 

  58. Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med. 2005;46(6):983–95. Review.

    CAS  PubMed  Google Scholar 

  59. de Langen AJ, Vincent A, Velasquez LM, van Tinteren H, Boellaard R, Shankar LK, et al. Repeatability of 18F-FDG uptake measurements in tumors: a metaanalysis. J Nucl Med. 2012;53(5):701–8.

    Article  PubMed  Google Scholar 

  60. Takei T, Kuge Y, Zhao S, Sato M, Strauss HW, Blankenberg FG, et al. Enhanced apoptotic reaction correlates with suppressed tumor glucose utilization after cytotoxic chemotherapy: use of 99mTc-Annexin V, 18F-FDG, and histologic evaluation. J Nucl Med. 2005;46(5):794–9.

    CAS  PubMed  Google Scholar 

  61. Li D, Yao Q, Li L, Wang L, Chen J. Correlation between hybrid 18F-FDG PET/CT and apoptosis induced by neoadjuvant chemotherapy in breast cancer. Cancer Biol Ther. 2007;6(9):1442–8.

    CAS  PubMed  Google Scholar 

  62. Celik B, Yalcin AD, Bisgin A, Dimitrakopoulou-Strauss A, Kargi A, Strauss LG. Level of TNF-related apoptosis-inducing-ligand and CXCL8 correlated with 2-[18F]fluoro-2-deoxy-D-glucose uptake in anti-VEGF treated colon cancers. Med Sci Monit. 2013;19:875–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Deron P, Vangestel C, Goethals I, De Potter A, Peeters M, Vermeersch H, et al. FDG uptake in primary squamous cell carcinoma of the head and neck. The relationship between overexpression of glucose transporters and hexokinases, tumour proliferation and apoptosis. Nuklearmedizin. 2011;50(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  64. Yeatman TJ, Mule J, Dalton WS, Sullivan D. On the eve of personalized medicine in oncology. Cancer Res. 2008;68(18):7250–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Basu S. Personalized versus evidence-based medicine with PET-based imaging. Nat Rev Clin Oncol. 2010;7(11):665–8.

    Article  PubMed  Google Scholar 

  66. Dimitrakopoulou-Strauss A. PET-based molecular imaging in personalized oncology: potential of the assessment of therapeutic outcome. Future Oncol. 2015;11(7):1083–91.

    Article  CAS  PubMed  Google Scholar 

  67. De Saint-Hubert M, Bauwens M, Mottaghy FM. Molecular imaging of apoptosis for early prediction of therapy efficiency. Curr Pharm Des. 2014;20(14):2319–28. Review.

    Article  PubMed  Google Scholar 

  68. Mariani G, Strauss HW. Positron emission and single-photon emission imaging: synergy rather than competition. Eur J Nucl Med Mol Imaging. 2011;38(7):1189–90.

    Article  PubMed  Google Scholar 

  69. Blankenberg FG. Imaging the molecular signatures of apoptosis and injury with radiolabeled annexin V. Proc Am Thorac Soc. 2009;6(5):469–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Belhocine T, Steinmetz N, Li C, Green A, Blankenberg FG. The imaging of apoptosis with the radiolabeled annexin V: optimal timing for clinical feasibility. Technol Cancer Res Treat. 2004;3(1):23–32. Review.

    Article  CAS  PubMed  Google Scholar 

  71. Beekman CA, Buckle T, van Leeuwen AC, Valdés Olmos RA, Verheij M, Rottenberg S, et al. Questioning the value of (99m)Tc-HYNIC-annexin V based response monitoring after docetaxel treatment in a mouse model for hereditary breast cancer. Appl Radiat Isot. 2011;69(4):656–62.

    Article  CAS  PubMed  Google Scholar 

  72. Erba PA, Manfredi C, Lazzeri E, Minichilli F, Pauwels EK, Sbrana A, et al. Time course of paclitaxel-induced apoptosis in an experimental, model of virus-induced breast cancer. J Nucl Med. 2010;51(5):775–81.

    Article  CAS  PubMed  Google Scholar 

  73. Kamal A, Faazil S, Malik MS. Apoptosis-inducing agents: a patent review (2010–2013). Expert Opin Ther Pat. 2014;24(3):339–54.

    Article  CAS  PubMed  Google Scholar 

  74. Meyn RE, Milas L, Ang KK. The role of apoptosis in radiation oncology. Int J Radiat Biol. 2009;85(2):107–15.

    Article  CAS  PubMed  Google Scholar 

  75. Van de Wiele C, Vermeersch H, Loose D, Signore A, Mertens N, Dierckx R. Radiolabeled annexin-V for monitoring treatment response in oncology. Cancer Biother Radiopharm. 2004;19(2):189–94. Review.

    Article  PubMed  Google Scholar 

  76. Verheij M. Clinical biomarkers and imaging for radiotherapy-induced cell death. Cancer Metastasis Rev. 2008;27(3):471–80.

    Article  PubMed  Google Scholar 

  77. Belhocine TZ. Imaging apoptosis. In: Pomper MG, Gelovani JG, editors. Molecular imaging in oncology. New York: Informa Healthcare; 2008. p. 493–502.

    Google Scholar 

  78. Kartachova M, Verheij MM, Eck BV, Hoefnagel K, Valdés Olmos R. Methodological aspects and applications of in vivo imaging of apoptosis in oncology: an illustrative review. Curr Med Imaging Rev. 2005;1(3):1–8.

    Article  Google Scholar 

  79. Shcherbinin S, Celler A, Belhocine T, Vanderwerf R, Driedger A. Accuracy of quantitative reconstructions in SPECT/CT imaging. Phys Med Biol. 2008;53(17):4595–604.

    Article  CAS  PubMed  Google Scholar 

  80. Zeintl J, Vija AH, Yahil A, Hornegger J, Kuwert T. Quantitative accuracy of clinical 99mTc SPECT/CT using ordered-subset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med. 2010;51(6):921–8.

    Article  PubMed  Google Scholar 

  81. Seret A, Nguyen D, Bernard C. Quantitative capabilities of four state-of-the-art SPECT-CT cameras. EJNMMI Res. 2012;2(1):45.

    Article  PubMed Central  PubMed  Google Scholar 

  82. HERMES Medical Solutions. New quantitative SPECT-CT reconstruction SUV SPECT™ now available. Presented at the SNMMI Annual Meeting, 7–11 June 2014, St. Louis, MO.

  83. Haidich AB. Meta-analysis in medical research. Hippokratia. 2010;14 Suppl 1:29–37.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to meta-analysis. Chichester: Wiley; 2009.

    Book  Google Scholar 

  85. Belhocine TZ, Vanderheyden JL. Annexin A5 imaging: an academic research – clinical trials and theses. Curr Mol Imaging. 2014;3(1):52–63.

    CAS  Google Scholar 

  86. Begg CB. The role of meta-analysis in monitoring clinical trials. Stat Med. 1996;15(12):1299–306. Discussion 1307–11. Review.

    Article  CAS  PubMed  Google Scholar 

  87. Byrd D, Linden H, Kinahan P. Efforts addressing SUV accuracy for PET quantitation and standardization. PET Center Excellence Newsl. 2013;10(4):1–3.

    Google Scholar 

  88. Graham MM. The Clinical Trials Network of the Society of Nuclear Medicine. Semin Nucl Med. 2010;40(5):327–31.

    Article  PubMed  Google Scholar 

  89. Tatsch K. Standardisation and harmonisation boost the credibility of nuclear medicine procedures. Eur J Nucl Med Mol Imaging. 2012;39(1):186–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the invaluable scientific contribution of Dr. Allan Green as a previous President and CEO of Theseus Imaging Corporation Inc. (Boston, MA, USA) for the single-center and multicenter clinical trials on 99mTc-annexin A5 imaging of apoptosis in cancer patients. The authors thank Dr. Neil Steinmetz as a previous Vice-President and Medical Monitor of Theseus Imaging Corporation Inc. for providing his unique data on the quantitative results from the European multicenter phase II/III 99mTc-Hynic-rh-annexin A5 clinical trial (NAS-2020). The authors also thank Dr. Rick L.M. Haas of The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Department of Radiotherapy (Amsterdam, The Netherlands) for providing detailed data on the 99mTc-annexin A5 clinical trial he conducted.

Compliance with Ethics Guidelines

Conflict of Interest

None.

Ethical approval

All procedures performed in studies involving human participants in the single-center and multicenter clinical trials included in this systematic review and meta-analysis of quantitative 99mTc-annexin A5 imaging of apoptosis were in accordance with the ethical standards of the institutional and/or national research committee and with the principles of the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards. This article does not describe any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the studies described.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Z. Belhocine.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belhocine, T.Z., Blankenberg, F.G., Kartachova, M.S. et al. 99mTc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials. Eur J Nucl Med Mol Imaging 42, 2083–2097 (2015). https://doi.org/10.1007/s00259-015-3152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3152-0

Keywords

Navigation