Skip to main content

Advertisement

Log in

Cortical hypermetabolism in MCI subjects: a compensatory mechanism?

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Alzheimer’s disease (AD) is associated with amyloid accumulation that takes place decades before symptoms appear. Cognitive impairment in AD is associated with reduced glucose metabolism. However, neuronal plasticity/compensatory mechanisms might come into play before the onset of dementia. The aim of this study was to determine whether there is evidence of cortical hypermetabolism as a compensatory mechanism before amyloid deposition takes place in subjects with amnestic mild cognitive impairment (aMCI).

Methods

Nine AD subjects and ten aMCI subjects had both [11C]PIB and [18F]FDG PET scans with arterial input in order to quantify the amyloid deposition and glucose metabolism in vivo in comparison with healthy control subjects who underwent either [11C]PIB or [18F]FDG PET scans. The [11C]PIB PET scans were quantified using [11C]PIB target region to cerebellum uptake ratio images created by integrating the activity collected from 60 to 90 min, and regional cerebral glucose metabolism was quantified using spectral analysis.

Results

In MCI subjects, cortical hypermetabolism was observed in four amyloid-negative subjects and one amyloid-positive subject, while hypometabolism was seen in five other MCI subjects with high amyloid load. Subjects with hypermetabolism and low amyloid did not convert to AD during clinical follow-up for 18 months in contrast to four amyloid-positive hypometabolic subjects who did convert to AD.

Conclusion

This preliminary study suggests that compensatory hypermetabolism can occur in aMCI subjects, particularly in those who are amyloid-negative. The increase in metabolic rate in different cortical regions with predominance in the occipital cortex may be a compensatory response to the neuronal damage occurring early in the disease process. It may also reflect recruitment of relatively minimally affected cortical regions to compensate for reduced function in the temporoparietal cortical association areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kim J, Basak JM, Holtzman DM. The role of apolipoprotein E in Alzheimer’s disease. Neuron. 2009;63(3):287–303. doi:10.1016/j.neuron.2009.06.026.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. 2004;55(3):306–19. doi:10.1002/ana.20009.

    Article  CAS  PubMed  Google Scholar 

  3. Shin J, Lee SY, Kim SJ, Kim SH, Cho SJ, Kim YB. Voxel-based analysis of Alzheimer’s disease PET imaging using a triplet of radiotracers: PIB, FDDNP, and FDG. Neuroimage. 2010;52(2):488–96. doi:10.1016/j.neuroimage.2010.04.013.

    Article  PubMed  Google Scholar 

  4. Klunk WE, Wang Y, Huang GF, Debnath ML, Holt DP, Shao L, et al. The binding of 2-(4′-methylaminophenyl)benzothiazole to postmortem brain homogenates is dominated by the amyloid component. J Neurosci. 2003;23(6):2086–92.

    CAS  PubMed  Google Scholar 

  5. Jack Jr CR, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, et al. Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: implications for sequence of pathological events in Alzheimer’s disease. Brain J Neurol. 2009;132(Pt 5):1355–65. doi:10.1093/brain/awp062.

    Article  Google Scholar 

  6. Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging. 2008;29(10):1456–65. doi:10.1016/j.neurobiolaging.2007.03.029.

    Article  CAS  PubMed  Google Scholar 

  7. Okello A, Koivunen J, Edison P, Archer HA, Turkheimer FE, Nagren K, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study. Neurology. 2009;73(10):754–60. doi:10.1212/WNL.0b013e3181b23564.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, et al. The Alzheimer’s Disease Neuroimaging Initiative: a review of papers published since its inception. Alzheimers Dement. 2013;9(5):e111–94. doi:10.1016/j.jalz.2013.05.1769.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Villemagne VL, Pike KE, Chetelat G, Ellis KA, Mulligan RS, Bourgeat P, et al. Longitudinal assessment of Abeta and cognition in aging and Alzheimer disease. Ann Neurol. 2011;69(1):181–92. doi:10.1002/ana.22248.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Aizenstein HJ, Nebes RD, Saxton JA, Price JC, Mathis CA, Tsopelas ND, et al. Frequent amyloid deposition without significant cognitive impairment among the elderly. Arch Neurol. 2008;65(11):1509–17. doi:10.1001/archneur.65.11.1509.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Mintun MA, Larossa GN, Sheline YI, Dence CS, Lee SY, Mach RH, et al. [11C]PIB in a nondemented population: potential antecedent marker of Alzheimer disease. Neurology. 2006;67(3):446–52.

    Article  CAS  PubMed  Google Scholar 

  12. Chetelat G, Villemagne VL, Villain N, Jones G, Ellis KA, Ames D, et al. Accelerated cortical atrophy in cognitively normal elderly with high beta-amyloid deposition. Neurology. 2012;78(7):477–84. doi:10.1212/WNL.0b013e318246d67a.

    Article  CAS  PubMed  Google Scholar 

  13. Rodrigue KM, Kennedy KM, Devous Sr MD, Rieck JR, Hebrank AC, Diaz-Arrastia R, et al. beta-Amyloid burden in healthy aging: regional distribution and cognitive consequences. Neurology. 2012;78(6):387–95. doi:10.1212/WNL.0b013e318245d295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Prohovnik I, Perl DP, Davis KL, Libow L, Lesser G, Haroutunian V. Dissociation of neuropathology from severity of dementia in late-onset Alzheimer disease. Neurology. 2006;66(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  15. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol. 1991;30(4):572–80. doi:10.1002/ana.410300410.

    Article  CAS  PubMed  Google Scholar 

  16. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, et al. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372(9634):216–23. doi:10.1016/S0140-6736(08)61075-2.

    Article  CAS  PubMed  Google Scholar 

  17. Benilova I, Karran E, De Strooper B. The toxic Abeta oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat Neurosci. 2012;15(3):349–57. doi:10.1038/nn.3028.

    Article  CAS  PubMed  Google Scholar 

  18. Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS, Pettigrew KD, et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977;28(5):897–916.

    Article  CAS  PubMed  Google Scholar 

  19. Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36(5):811–22. doi:10.1007/s00259-008-1039-z.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nordberg A, Rinne JO, Kadir A, Langstrom B. The use of PET in Alzheimer disease. Nat Rev Neurol. 2010;6(2):78–87. doi:10.1038/nrneurol.2009.217.

    Article  CAS  PubMed  Google Scholar 

  21. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol. 1997;42(1):85–94. doi:10.1002/ana.410420114.

    Article  CAS  PubMed  Google Scholar 

  22. Mosconi L, Tsui WH, De Santi S, Li J, Rusinek H, Convit A, et al. Reduced hippocampal metabolism in MCI and AD: automated FDG-PET image analysis. Neurology. 2005;64(11):1860–7.

    Article  CAS  PubMed  Google Scholar 

  23. Mosconi L, De Santi S, Li Y, Li J, Zhan J, Tsui WH, et al. Visual rating of medial temporal lobe metabolism in mild cognitive impairment and Alzheimer’s disease using FDG-PET. Eur J Nucl Med Mol Imaging. 2006;33(2):210–21.

    Article  PubMed  Google Scholar 

  24. Anchisi D, Borroni B, Franceschi M, Kerrouche N, Kalbe E, Beuthien-Beumann B, et al. Heterogeneity of brain glucose metabolism in mild cognitive impairment and clinical progression to Alzheimer disease. Arch Neurol. 2005;62(11):1728–33. doi:10.1001/archneur.62.11.1728.

    Article  PubMed  Google Scholar 

  25. Stern Y. Cognitive reserve and Alzheimer disease. Alzheimer Dis Assoc Disord. 2006;20(2):112–7. doi:10.1097/01.wad.0000213815.20177.19.

    Article  PubMed  Google Scholar 

  26. Sattler C, Toro P, Schonknecht P, Schroder J. Cognitive activity, education and socioeconomic status as preventive factors for mild cognitive impairment and Alzheimer’s disease. Psychiatry Res. 2012;196(1):90–5. doi:10.1016/j.psychres.2011.11.012.

    Article  PubMed  Google Scholar 

  27. Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, et al. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology. 2009;72(1):56–62. doi:10.1212/01.wnl.0000338622.27876.0d.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Edison P, Archer HA, Hinz R, Hammers A, Pavese N, Tai YF, et al. Amyloid, hypometabolism, and cognition in Alzheimer disease: an [11C]PIB and [18F]FDG PET study. Neurology. 2007;68(7):501–8. doi:10.1212/01.wnl.0000244749.20056.d4.

    Article  CAS  PubMed  Google Scholar 

  29. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939–44.

    Article  CAS  PubMed  Google Scholar 

  30. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92.

    Article  CAS  PubMed  Google Scholar 

  31. Ewers M, Insel P, Jagust WJ, Shaw L, Trojanowski JQ, Aisen P, et al. CSF biomarker and PIB-PET-derived beta-amyloid signature predicts metabolic, gray matter, and cognitive changes in nondemented subjects. Cereb Cortex. 2012;22(9):1993–2004. doi:10.1093/cercor/bhr271.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Jagust WJ, Landau SM, Shaw LM, Trojanowski JQ, Koeppe RA, Reiman EM, et al. Relationships between biomarkers in aging and dementia. Neurology. 2009;73(15):1193–9. doi:10.1212/Wnl.0b013e3181bc010c.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Busche MA, Chen X, Henning HA, Reichwald J, Staufenbiel M, Sakmann B, et al. Critical role of soluble amyloid-beta for early hippocampal hyperactivity in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A. 2012;109(22):8740–5. doi:10.1073/pnas.1206171109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Balducci C, Beeg M, Stravalaci M, Bastone A, Sclip A, Biasini E, et al. Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein. Proc Natl Acad Sci U S A. 2010;107(5):2295–300. doi:10.1073/pnas.0911829107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Lesne S, Kotilinek L, Ashe KH. Plaque-bearing mice with reduced levels of oligomeric amyloid-beta assemblies have intact memory function. Neuroscience. 2008;151(3):745–9. doi:10.1016/j.neuroscience.2007.10.054.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, et al. Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat Neurosci. 2005;8(1):79–84. doi:10.1038/nn1372.

    Article  CAS  PubMed  Google Scholar 

  37. Jana A, Pahan K. Fibrillar amyloid-beta-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease. J Neurosci. 2010;30(38):12676–89. doi:10.1523/JNEUROSCI.1243-10.2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Stern Y. Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol. 2012;11(11):1006–12. doi:10.1016/S1474-4422(12)70191-6.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Jagust WJ, Mormino EC. Lifespan brain activity, beta-amyloid, and Alzheimer’s disease. Trends Cogn Sci. 2011;15(11):520–6. doi:10.1016/j.tics.2011.09.004.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Ossenkoppele R, Madison C, Oh H, Wirth M, van Berckel BN, Jagust WJ. Is verbal episodic memory in elderly with amyloid deposits preserved through altered neuronal function? Cereb Cortex. 2014;24(8):2210–8. doi:10.1093/cercor/bht076.

    Article  PubMed  Google Scholar 

  41. Morbelli S, Perneczky R, Drzezga A, Frisoni GB, Caroli A, van Berckel BN, et al. Metabolic networks underlying cognitive reserve in prodromal Alzheimer disease: a European Alzheimer disease consortium project. J Nucl Med. 2013;54(6):894–902. doi:10.2967/jnumed.112.113928.

    Article  CAS  PubMed  Google Scholar 

  42. Cohen AD, Price JC, Weissfeld LA, James J, Rosario BL, Bi W, et al. Basal cerebral metabolism may modulate the cognitive effects of Abeta in mild cognitive impairment: an example of brain reserve. J Neurosci. 2009;29(47):14770–8. doi:10.1523/JNEUROSCI.3669-09.2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Borghammer P, Cumming P, Aanerud J, Gjedde A. Artefactual subcortical hyperperfusion in PET studies normalized to global mean: lessons from Parkinson’s disease. Neuroimage. 2009;45(2):249–57. doi:10.1016/j.neuroimage.2008.07.042.

    Article  PubMed  Google Scholar 

  44. Borghammer P, Chakravarty M, Jonsdottir KY, Sato N, Matsuda H, Ito K, et al. Cortical hypometabolism and hypoperfusion in Parkinson’s disease is extensive: probably even at early disease stages. Brain Struct Funct. 2010;214(4):303–17. doi:10.1007/s00429-010-0246-0.

    Article  PubMed  Google Scholar 

  45. Jack Jr CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):207–16. doi:10.1016/S1474-4422(12)70291-0.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Knight EM, Verkhratsky A, Luckman SM, Allan SM, Lawrence CB. Hypermetabolism in a triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Aging. 2012;33(1):187–93. doi:10.1016/j.neurobiolaging.2010.02.003.

    Article  CAS  PubMed  Google Scholar 

  47. Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science. 2008;321(5896):1686–9. doi:10.1126/science.1162844.

    Article  CAS  PubMed  Google Scholar 

  48. Calero MD, Navarro E. Relationship between plasticity, mild cognitive impairment and cognitive decline. Arch Clin Neuropsychol. 2004;19(5):653–60.

    Article  PubMed  Google Scholar 

  49. Mesulam MM. A plasticity-based theory of the pathogenesis of Alzheimer’s disease. Ann N Y Acad Sci. 2000;924:42–52.

    Article  CAS  PubMed  Google Scholar 

  50. Kantarci K, Senjem ML, Lowe VJ, Wiste HJ, Weigand SD, Kemp BJ, et al. Effects of age on the glucose metabolic changes in mild cognitive impairment. AJNR Am J Neuroradiol. 2010;31(7):1247–53. doi:10.3174/ajnr.A2070.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Iacono D, Resnick SM, O’Brien R, Zonderman AB, An Y, Pletnikova O, et al. Mild cognitive impairment and asymptomatic Alzheimer disease subjects: equivalent beta-amyloid and tau loads with divergent cognitive outcomes. J Neuropathol Exp Neurol. 2014;73(4):295–304. doi:10.1097/NEN.0000000000000052.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Bell KF, Bennett DA, Cuello AC. Paradoxical upregulation of glutamatergic presynaptic boutons during mild cognitive impairment. J Neurosci. 2007;27(40):10810–7. doi:10.1523/JNEUROSCI.3269-07.2007.

    Article  CAS  PubMed  Google Scholar 

  53. Riudavets MA, Iacono D, Resnick SM, O’Brien R, Zonderman AB, Martin LJ, et al. Resistance to Alzheimer’s pathology is associated with nuclear hypertrophy in neurons. Neurobiol Aging. 2007;28(10):1484–92. doi:10.1016/j.neurobiolaging.2007.05.005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Sultana R, Butterfield DA. Regional expression of key cell cycle proteins in brain from subjects with amnestic mild cognitive impairment. Neurochem Res. 2007;32(4–5):655–62. doi:10.1007/s11064-006-9123-x.

    Article  CAS  PubMed  Google Scholar 

  55. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82(4):239–59.

    Article  CAS  PubMed  Google Scholar 

  56. Dickerson BC, Salat DH, Greve DN, Chua EF, Rand-Giovannetti E, Rentz DM, et al. Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology. 2005;65(3):404–11.

    Article  CAS  PubMed  Google Scholar 

  57. O’Brien JL, O’Keefe KM, LaViolette PS, DeLuca AN, Blacker D, Dickerson BC, et al. Longitudinal fMRI in elderly reveals loss of hippocampal activation with clinical decline. Neurology. 2010;74(24):1969–76. doi:10.1212/WNL.0b013e3181e3966e.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Andres P, Parmentier FB, Escera C. The effect of age on involuntary capture of attention by irrelevant sounds: a test of the frontal hypothesis of aging. Neuropsychologia. 2006;44(12):2564–8. doi:10.1016/j.neuropsychologia.2006.05.005.

    Article  PubMed  Google Scholar 

  59. Sperling RA, Laviolette PS, O’Keefe K, O’Brien J, Rentz DM, Pihlajamaki M, et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 2009;63(2):178–88. doi:10.1016/j.neuron.2009.07.003.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Bakker A, Krauss GL, Albert MS, Speck CL, Jones LR, Stark CE, et al. Reduction of hippocampal hyperactivity improves cognition in amnestic mild cognitive impairment. Neuron. 2012;74(3):467–74. doi:10.1016/j.neuron.2012.03.023.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Risberg J, Passant U, Warkentin S, Gustafson L. Regional cerebral blood flow in frontal lobe dementia of non-Alzheimer type. Dementia. 1993;4(3-4):186–7.

    CAS  PubMed  Google Scholar 

  62. Rohrer JD, Warren JD, Omar R, Mead S, Beck J, Revesz T, et al. Parietal lobe deficits in frontotemporal lobar degeneration caused by a mutation in the progranulin gene. Arch Neurol. 2008;65(4):506–13. doi:10.1001/archneur.65.4.506.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Hammersmith Imanet, GE Healthcare, for the provision of radiotracers, and scanning and blood analysis equipment. P. Edison was funded by the Medical Research Council and now by the Higher Education Funding Council for England (HEFCE). The PET scans and MRI scans were funded by the Medical Research Council and Alzheimer’s Research UK.

This research was supported by the National Institute for Health Research (NIHR) Imperial Biomedical Research Centre. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

Conflicts of interest

This study was funded by Medical Research Council, UK. Dr. Edison has received funding from Medical Research Council, UK, as his fellowship/salary. Prof. Brooks is also the chief medical officer for GE Healthcare. Ms. Fan and Mr. Ashraf have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Edison.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online resource 1

(DOCX 11 kb)

Online resource 2

(DOCX 18 kb)

Online resource 3

(DOCX 300 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, A., Fan, Z., Brooks, D.J. et al. Cortical hypermetabolism in MCI subjects: a compensatory mechanism?. Eur J Nucl Med Mol Imaging 42, 447–458 (2015). https://doi.org/10.1007/s00259-014-2919-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2919-z

Keywords

Navigation